3.58–3.48 (m, 1 H [H₃₂]), 3.35 (s, 3 H [H_{0Me}]), 3.07 (d, J = 6.1 Hz, 2 H, [H₂₈]), 2.95–2.88 (m, 1 H [h₃₁]), 2.20–2.10 (m, 1 H [H_{30eq}]), 2.10–2.01 (m, 1 H [H₂₉]), 1.92–1.87 (m, 2 H [H_{33eq}]), 1.87–1.80 (m, 1 H [H_{34eq}]), 1.40–1.21 (m, 1 H [H_{34ax}]), 1.10–0.85 (m, 5 H), 1.05 (br s, 18 H); IR (CH₂Cl₂) ν 2920, 2860, 1470, 1440, 1300, 1090 cm⁻¹; CI HRMS m/e 441.2494 (C₂₃H₄₀O₄SSi requires 441.2496); ¹³C NMR (CDCl₃, 62 MHz) δ 140.04, 133.56, 129.26, 127.74, 83.32, 73.39, 61.56, 57.34, 34.86, 32.17, 30.42, 29.66, 17.99, 17.80, 12.45.

Acknowledgment. This research was supported by National Institutes of Health (PHS Grant AI 16943). An Americal Chemical Society Graduate Fellowship (Division of Organic Chemistry) to M. E. is gratefully acknowledged. NMR spectra were obtained through the auspices of the Northeast Regional NSF/NMR Facility at Yale University, which was supported by NSF Chemistry Division Grant CHE 7916210.

Supplementary Material Available: ¹H NMR spectra for 3, 22, 23, 25–28, and 30–32 and ¹³C NMR spectra for 22, 23, 28, and 32 (14 pages). Ordering information is given on any current masthead page.

Stereoselective Routes to the C₁₀-C₁₉ Fragment of FK-506

Anabella Villalobos and Samuel J. Danishefsky*

Department of Chemistry, Yale University, New Haven, Connecticut 06511

Received November 27, 1989

D-Galactose was used as a starting material to reach the titled system. The key elements of one of the syntheses involved directed homogeneous hydrogenation and diastereoselective lactonization reactions (see $26 \rightarrow 6$ and $6 \rightarrow 7$). In another synthetic route directed catalytic hydrogenation was used to fashion 34 where the end groups were already differentiated.

Background and Synthetic Planning

In this paper we focus on the synthesis of compound 2a, which was envisioned to be an important building block in a total synthesis of FK-506 (1).¹⁻⁴ The retrosynthetic dissection indicators on the C_9-C_{10} and $C_{19}-C_{20}$ bonds in 1 indicate, in a general sense, how this system was to be fitted into the overall synthetic scheme. The $C_{19}-C_{20}$ bond would be fashioned from the reaction of a sulfone stabilized C_{19} -carbanion with a C_{20} -aldehyde. The mode of construction of the C_9-C_{10} bond was left open. One obvious format would involve reaction of a dithiane stabilized C_{10} -carbanion with a C_9 -electrophile. Alternatively a C_{10} -aldehyde might function as an electrophile in reaction with a C_9 -nucleophile (not specified in detail).

(4) For the total synthesis of FK-506, see: Jones, T. K.; Mills, S. G.; Reamer, R. A.; Askin, D.; Desmond, R.; Volante, R. P.; Shinkai, I. J. Am. Chem. Soc. 1989, 111, 1157.

Not lost upon us in examining the structure of dithianesulfone 2a was the syn $C_{11}-C_{13}$ methyl-methoxy relationship which is duplicated in the $C_{17}-C_{15}$ connectivity. If the R and R' functions in the deliberately unspecified structure 3 are identical, C_{14} is nonstereogenic (C_2 symmetry). Clearly any perturbation that results in nonequivalence of R and R' in such a structure confers stereogenicity on C_{14} (cf. structures 4 and 5).

stereogenicity on C_{14} (cf. structures 4 and 5). A priori, it seemed unlikely that the energy difference between 4 and its C_{14} epimer (see structure 5) would be substantial in any acyclic intermediates. Accordingly it seemed unlikely that useful selectivity would arise from a reaction that converted 3 to an acyclic product such as 4 or 5 in which R and R' were nonidentical.

An approach to improve chances for stereoselectivity in the generation of 4 relative to 5, via the intermediacy of a C_2 symmetric structure 3, would be to use lactonization

⁽¹⁾ For isolation and structure proof see: Kino, T.; Hatanaka, H.; Hashimoto, M.; Nishimaya, M.; Goto, T.; Okuhara, M.; Kohsaka, M.; Aoki, H.; Imanaka, M. J. Antibiot. 1987, 40, 1249. Tanaka, H.; Kuroda, A.; Marusawa, H.; Hatanaka, H.; Kino, T.; Goto, T. Hashimoto, M. J. Am. Chem. Soc. 1987, 109, 5031.

⁽²⁾ For recent biological data on FK-506, see: (a) Thompson, A. W.; *Immunol. Today* 1988, 10, 6. (b) Warty, V.; Diven, W.; Cadoff, E.; Todo, S.; Starzl, T.; Sanghvi, A. Transplantation 1988, 46, 453.

⁽³⁾ For synthetic approaches to FK-506, see: (a) Askin, D.; Volante, R. P.; Ryan, K. M.; Reamer, R. A.; Shinkai, I. Tetrahedron Lett. 1988, 29, 4245 and references to earlier Merck papers. (b) Williams, D. R.; Benbow, J. W. J. Org. Chem. 1988, 53, 4643. (c) Kocienski, P.; Stocks, M.; Donald, D.; Cooper, M.; Manners, A. Tetrahedron Lett. 1988, 29, 4481. (d) Ireland, R. E.; Wipf, P. Tetrahedron Lett. 1989, 30, 919. (e) Smith, A. B. III; Hale, K. J. Tetrahedron Lett. 1989, 30, 1037. (f) Schreiber, S. L.; Smith, D. B. J. Org. Chem. 1989, 54, 9. (g) Schreiber, S. L.; Sammakia, T.; Uehling, D. E. J. Org. Chem. 1989, 54, 15. (h) Ragan, J. A.; Nakatsuka, M.; Smith, D. B.; Uehling, D. E.; Schreiber, S. L. J. Org. Chem. 1989, 54, 4267. (i) Egbertson, M.; Danishefsky, S. J. J. Org. Chem. 1989, 54, 12. (j) Villalobos, A.; Danishefsky, S. J. J. Org. Chem. 1989, 54, 12. (j) Villalobos, A.; Danishefsky, S. J. J. Org. Chem. 1989, 54, 12. (i) Villalobos, A.; Danishefsky, S. J. J. Org. Chem. 1989, 54, 12. (i) Villalobos, A.; Danishefsky, S. J. J. Org. Chem. 1989, 54, 12. (i) Villalobos, A.; Danishefsky, S. J. J. Org. Chem. 1989, 54, 17. (i) Wasserman, H. H.; Rotello, V. M.; Williams, D. R.; Benbow, J. W. J. Org. Chem. 1989, 54, 2785. (m) Corey, E. J.; Huang, H.-C. Tetrahedron Lett. 1989, 30, 5235. (n) Wang, Z. Tetrahedron Lett. 1989, 30, 6611. (o) Smith, A. B., III; Hale, K. J.; Laakso, L. M.; Chen, K.; Riéra, A. Tetrahedron Lett. 1989, 30, 6963.

for end group differentiation.^{5,6} Consideration of intermediate 6 reveals that lactonization, from the C_{10} or C₁₈-carbomethoxyl function, would produce compound 7 or 8, respectively (Scheme II). In lactone 7, if it adopts a chair conformation, the three ring-bound substituents can each be equatorial. However, lactone 8 must accommodate either a 1,3 diaxial (C_{17} -methyl- C_{15} -methoxy) interaction or, more likely, an axial disposition for the large function at C₁₄. The greater thermodynamic stability expected for 7 relative to 8 would perhaps be mirrored at the kinetic level, in selecting between these lactonization modes.⁷ While exploring this interesting possibility, we also investigated an alternative strategy. Toward this end we developed a route where a differentiated intermediate of the type 4 would be produced from the outset (see compound 34).

It was recognized that the configurations at carbons 2, 3, and 4 of D-galactose (see methyl β -D-galactopyranoside. 11) could be construed to correspond to those of carbons 15, 14, and 13 (respectively) of target system 2. It was further recognized that the required configurations at carbons 11 and 17 might be installed by directed hydrogenation of the generalized system, 9. In this analysis we left open the question as to the identity or nonidentity of termini R and R' as we converged upon 2. The important feature of the analysis was that with a free homoallylic alcohol as an anchoring element, we could take advantage of the dramatic findings of Evans and co-workers.^{8,9} On the basis of these precedents, hydrogenation of 9 with the homogeneous catalyst 10, under the guidance of the allylic methoxy groups, would be expected to strongly favor the emergence of the required configuration at carbons 11 and 17.

⁽⁵⁾ For formulation and application of the concept of end group differentiation by diastereoselective lactonization see: Hoye, T. R.; Peck, D. R.; Swanson, T. A. J. Am. Chem. Soc. 1984, 106, 2738.

⁽⁶⁾ For an exposition of the strategy of two directional chain synthesis, see: Schreiber, S. L. Chem. Scr. 1987, 27, 563.

⁽⁷⁾ Molecular mechanics calculations (MM2 force field) indicate that lactone 7 adopts a twist-chair conformation and is 3.2 kcal/mol more stable that lactone 8, which prefers a half-chair conformation.
(8) (a) Evans, D. A.; Morrissey, M. M.; Dow, R. C. Tetrahedron Lett.

 ^{(8) (}a) Evans, D. A.; Morrissey, M. M.; Dow, R. C. Tetrahedron Lett.
 1985, 26, 6005. (b) Evans, D. A.; Morrissey, M. M. J. Am. Chem. Soc.
 1984, 106, 3866.

 ^{(9) (}a) Brown, J. M.; Naik, R. G. J. Chem. Soc., Chem. Commun. 1982,
 348. (b) For a review of the field, see: Brown, J. M. Angew. Chem., Int. Ed. Engl. 1987, 26, 190.

lead to structure 6. Compound 33 would, upon similar reduction, afford 34, a useful type 4 substrate.

Discussion of Results

The commercially available methyl β -D-galactopyranoside 11 was converted (72%) to its mono tert-butyldimethylsilyl (TBS) derivative 12,10 and thence, to the $m C_3$ -monobenzyl ether 13 (98%) via stannylation and mo-nobenzylation.¹¹ Methylation of the $m C_2$ - and $m C_4$ -hydroxyl groups afforded 14 in 95%. Two routes were pursued to reach intermediate 20 (Scheme IV).

The shorter route started with selective cleavage of the TBS ether (aqueous HOAc, THF) to give alcohol 15 in 95%. Iodination of the primary alcohol (Ph₃P, I₂)^{12a-c} afforded compound 16 in 77% yield, which, upon Vasella fragmentation¹³ (Zn, EtOH), gave rise to 17 (95% yield). Ozonolysis of 17 followed by reductive workup (Ph₃P) produced the unstable dialdehyde 18 (not isolated), which, upon double Wittig reaction with phosphorane 19, afforded bis-enoate 20 in 64% yield.

Before this most concise route had been optimized and rendered reproducible, we had worked out a longer but still efficient route to 20 involving sequential rather than concurrent Wittig reactions. Cleavage of both the silyl and methyl glycoside ethers of 14 afforded 21 in 73% yield. The latter was subjected to reductive ring opening with sodium borohydride. Triol 22, thus obtained in 90% yield, was converted to its isopropylidene derivative 23 in 89% yield. Swern oxidation of 23 followed by Wittig olefination of the resulting aldehyde 24 furnished enoate 25 in 90% yield. Removal of the isopropylidene blocking group (aqueous HOAc) followed by oxidative $(NaIO_4)$ cleavage of the diol afforded a crude aldehyde which, on reaction with phosphorane 19, gave rise to bis-enoate 20 in 79% overall yield.

Deprotection of the benzyl group in 20 was accomplished (88%) with iodotrimethylsilane (traces of HI) in methylene chloride. The resultant compound 26 was an eligible substrate for two-directional reduction and diastereotopic end group differentiation. Before discussing the results of this hydrogenation, we describe a synthesis of diene 33 in which the termini are already distinguished.

A variant of the above route, with compound 25 as a branch point, led to differentiated diene 33 (Scheme V). Treatment of enoate 25 with LiEt₃BH gave a quantitative yield of allylic alcohol 27. This compound was converted (67% yield) to allylic chloride 28 through the agency of

111, 259.
(11) David, S.; Hanessian, S. Tetrahedron 1985, 41, 643.
(12) (a) Edwards, M. P.; Ley, S. V.; Lister, S. G.; Palmer, B. D.; Williams, D. J. J. Org. Chem. 1984, 49, 3503. (b) Corey, E. J.; Pyne, S. G.; Su, W. Tetrahedron Lett. 1983, 24, 4883. (c) Garegg, P. J.; Samuelsson, D. S. C. Chem. 2010, B. J. Chem. Soc., Perkin Trans. 1 1980, 2866.

2a $P = Me_2(Bu)Si$

methanesulfonyl chloride-lithium chloride in s-collidine. Conversion of 28 to the β,γ -unsaturated nitrile 29 was attended by some difficulty. Reaction of 28 with sodium cyanide in DMF did indeed lead to 29 in 69% yield; however, the reaction also produced the undesired α,β unsaturated isomer in 22% yield. A two-step reduction sequence [(i) DIBAL-H, CH_2Cl_2 ; (ii) NaBH₄, EtOH] of 29 produced homoallylic alcohol 30 (63%). At this stage it was convenient to cleave the benzyl ether in a reductive fashion (Na, NH_3 , -78 °C). Diol 31, thus obtained in 90% yield from 30, was deprotected with aqueous acetic acid. The tetraol produced was cleaved with sodium *m*-periodate. Olefination of the resultant unstable β -hydroxy aldehyde followed by selective benzoylation of the primary alcohol in compound 32 afforded 33 (55% overall, four steps). This compound was our other candidate substrate for two-directional hydrogenation, this time in the differentiated mode.

We turn first to the reduction of diene 26 (Scheme VI). Reaction was carried out with hydrogen gas at 1000 psi in methylene chloride at room temperature in the presence of cationic rhodium complex, 10.8,9 A three-component mixture of tetrahydro products was produced. GLC analysis indicated the three components to be present in a 19:2.2:1 ratio. The fouth possible permutant was not observed. Preparative-scale chromatographic separation of these components was not feasible at this stage.

The precedents for this type of directed hydrogenation were provided in a thorough series of investigations by Evans and co-workers.^{8,9} What emerges from these studies is a trend wherein the major stereochemical determinant is the allylic substituent. In this case, we hoped that the methoxy functions allylic to each double bond would be decisive. The stereochemistry of the anchoring allylic alcohol tends to be of minor importance. On the basis of these Evans^{8,9} precedents, the expected major product would be compound 6. This structural assignment could

⁽¹⁰⁾ Mark, E.; Zbiral, E.; Brandstetter, H. H. Monastsch. Chem. 1980, 111, 289.

⁽¹³⁾ Bernet, B.; Vasella, A. Helv. Chim. Acta 1984, 67, 1328.

not be proven in the case at hand, particularly in the absence of a homogeneous sample of the major product. Nonetheless, we moved on to the next step, assuming the correctness of the formulation. The total reaction mixture was subjected to lactonization. Heating in the presence of strong acids gave complex reaction mixtures. Attempts to promote lactone formation by base hydrolysis of the esters and acidification also led to a complex collection of products with no apparent selectivity. The best results in our hands involved long-term treatment of the hydroxy diester mixture with pyridinium p-toluenesulfonate (PP-TS) in methylene chloride. Chromatography on silica gel afforded a major fraction (64% yield) which itself was typically a 4-6:1 mixture of products. NMR analysis indicated that the major lactone had the required C_{11} - C_{13} cis and C_{13} - C_{14} trans relationships in the lactone ring. At this stage, assignment of the configuration at C_{17} rested on the stereochemical logic of the hydrogenation reaction as indicated by the Evans precedents. The correctness of this assignment was strongly suggested later when the same compound was produced as the major lactonization isomer by Schreiber and associates^{3g} using a very reasonable but completely separate stereochemical rationale. Eventually the point was proven by the intersection of our total synthesis with a late intermediate in the Merck total synthesis of FK-506.4,14

The structure of the minor component of the lactonization mixture has not been determined. We believe that it is in fact lactone 8 arising from lactonization of 6 in the alternative sense. We favor this assignment from the fact that there seems to be more of this compound produced than would be expected from any of the minor tetrahydro isomers (each of which would be likely to lactonize in either of two senses). We believe that the lactones derived from these minor tetrahydro products were those which were successfully separated by the silica gel chromatography.

Conversion of the lactone mixture, with 7 as the major component, to the desired sulfone 2a was accomplished by Schreiber and associates^{3g} in an effort conducted concurrently with the one described here. These steps were readily carried out in our laboratory, with separation of the minor diastereomers being accomplished progressively as the synthesis went along. Of course, the final product 2a is obtained as a mixture of stereoisomers at C₁₉. The same is true in our synthesis which is described below.

While the lactonization of intermediate 6 was indeed diastereoselective, it was not specific. Hence, another difficult separation was required. Accordingly, we evaluated the practicality of a route which involved directed hydrogenation of intermediate 33 (Scheme VII). As before, we made recourse to high pressures of hydrogen in the presence of catalyst 10. Again, a major tetrahydro product was produced. While by chromatographic criteria the product (89%) appeared to be a single entity, NMR analysis indicated the presence of ca. 16% of other materials, presumably some of the tetrahydro stereoisomers. Lactonization could now be carried out very smoothly (93%) with *p*-toluenesulfonic acid in methylene chloride. On basis of the Evans precedents, the major tetrahydro product was formulated as 34 and the lactone, accordingly, as 35. Reduction with L-Selectride (Aldrich) (94%) afforded hemiacetal 36, which, upon thioacetalization, provided dithiane-alcohol 37 (85%). After conversion to the TBS derivative 38 (97%), cleavage of the benzoate (K_2CO_3 , MeOH) afforded primary alcohol 39. It was during the purification of this compound that complete removal of products arising from the presumed isomeric tetrahydro isomers accompanying 34 could be accomplished.

Iodide 40 obtained from the reaction of 39 with Ph_3P-I_2 was converted to the primary sulfone 41 (PhSO₂Na, DMF) in 81% yield. Methylation of this sulfone to produce 2a was accomplished through deprotonation with *n*-butyllithium followed by alkylation with methyl iodide. There was thus obtained the desired secondary sulfone 2a in 93% yield (see the Experimental Section). For some purposes it seemed that it would be helpful to install a triethylsilyl protecting group at C₁₄. This was readily accomplished from 2a by desilylation (HF-CH₃CN) followed by resilylation (Et₃SiOTf, 2,6-lutidine) to afford 2b in 90% overall yield. In summary, several routes were developed to the desired goal system 2a or 2b. Its incorporation in a totally synthetic route to FK-506 is described in the following paper.

Experimental Section

General Procedures. Melting points were determined on a Thomas-Hoover capillary melting point apparatus and are uncorrected. Infrared (IR) spectra were recorded on a Perkin-Elmer 1420 spectrophotometer. Low-resolution (EI) and high-resolution (EI, CI, and FAB) mass spectra were determined on a Hewlett-Packard 5985 mass spectrometer and a Kratos MS80RFA spec-

⁽¹⁴⁾ Jones, A. B.; Villalobos, A.; Linde, R. G. II; Danishefsky, S. J. J. Org. Chem., following paper in this issue.

trometer, respectively. High-field ¹H NMR spectra were recorded on a Bruker 490 instrument in $CDCl_3$ with $CHCl_3$ (7.27 ppm) or $Si(CH_3)_4$ (0.0 ppm) as an internal reference. Microanalyses were performed by Galbraith Laboratories, Inc., or Robertson Laboratories, Inc. Flash chromatography was performed on EM Kieselgel 60 (230-400 mesh).

All reactions were carried under a positive pressure of N_2 , unless otherwise noted. Tetrahydrofuran (THF) was distilled immediately before use from sodium benzophenone ketyl. Methylene chloride (CH₂Cl₂) was freshly distilled from P_2O_5 before use. Benzene and toluene were distilled from CaH₂, and methanol (MeOH) was distilled from Mg turnings before use. Anhydrous pyridine, dimethylformamide (DMF), and dimethyl sulfoxide (DMSO) were purchased from Aldrich Chemical Co. *p*-Toluenesulfonic acid monohydrate was dried before use by dissolving in a minimum amount of EtOH, concentrating from benzene under reduced pressure (twice), and drying under high vacuum. Zn powder was activated as described by Fieser and Fieser (Vol. 1, p 1276) by washing with 1 N HCl, water, MeOH, and ether and drying under high vacuum.

Methyl 6-O-[(1,1-Dimethylethyl)dimethylsilyl]- β -Dgalactopyranoside (12). tert-Butyldimethylsilyl chloride (17.0 g, 0.113 mol) was added to a mixture of methyl β -D-galactopyranoside (20.0 g, 0.103 mol), triethylamine (32 mL, 0.227 mol), and DMAP (1.26 g, 0.0103 mol) in CH₂Cl₂ (200 mL) at room temperature. After 15-20 h, the reaction mixture was filtered and the filtrate was concentrated. Purification by chromatography (50% EtOAc-hex \rightarrow 100% EtOAc) gave 12 (22.9 g, 72%) as a pale yellow gum: $[\alpha]^{25}{}_{\rm D} = -30.5^{\circ} (c = 1.08, \text{CHCl}_3) [\text{lit.}^{10} \text{ value: } [\alpha]^{25}{}_{\rm D}$ = -10.5° (c = 1, CHCl₃)]; ¹H NMR δ 4.68 (br s, 1 H, OH), 4.57 (br s, 1 H, OH), 4.16 (d, 1 H, J = 7.6 Hz, OCHOMe), 4.00 (apparent br s, 1 H, TBSOCH₂CHCH), 3.91 (dd, 1 H, J = 10.4 Hz, J = 6.1Hz, one of TBSOC H_2), 3.84 (dd, 1 H, J = 10.4 Hz, J = 5.4 Hz, one of TBSOCH₂), 3.68-3.72 (m, 2 H, OCH(OMe)CHOH, and OH), 3.57-3.59 (m, 1 H, OCH(OMe)CHCHOH), 3.55 (s, 3 H, OCH_3), 3.48 (t, 1 H, J = 5.7 Hz, $TBSOCH_2CH$), 0.90 (s, 9 H, SiC(CH₃)₃), 0.090 (s, 6 H, Si(CH₃)₂); IR (thin film) 3400, 2940, 2920, 2875, 2845, 1465, 1460, 1385, 1250, 1135, 1095, 1070, 840, 775 cm⁻¹; EIMS m/e (relative intensity) 293 (0.1), 278 (0.2), 261 (0.8), 243 (0.7), 219 (70), 201 (47), 171 (22), 159 (39), 143 (30), 117 (100), 105 (35), 75 (60); CIHRMS calcd for C₁₃H₂₈O₆Si 309.1734, found 309.1733

Methyl 6-O-[(1,1-Dimethylethyl)dimethylsilyl]-3-O-(phenylmethyl)-\$-D-galactopyranoside (13). Bis(tri-n-butyltin) oxide (28 mL, 0.056 mol) was added to a solution of triol 12 (22.9 g, 0.074 mol) in toluene (500 mL). The resulting mixture was heated to reflux for 6 h with azeotropic removal of H₂O (Dean-Stark trap). The mixture was allowed to cool to 80 °C, and benzyl bromide (22 mL, 0.19 mol) followed by tetra-n-butylammonium bromide (30.0 g, 0.093 mol) was added. After 12 h, more benzyl bromide (5.0 mL, 0.042 mol) and tetra-n-butylammonium bromide (6.0 g, 0.019 mol) were added. The mixture was concentrated and purified by chromatography $(20 \rightarrow 50\% \text{ EtOAc-hexane})$ to afford 13 (29.1 g, 98%) as a white solid. A small amount was purified further by recrystallization (hexane) for characterization: mp (hexane) 94–95 °C; $[\alpha]^{25}_{D} = -4.05^{\circ}$ (c = 3.3, CHCl₃); ¹H NMR δ 7.32-7.41 (m, 5 H, ArH), 4.76 (s, 2 H, PhCH₂O), 4.17 (d, 1 H, J = 7.8 Hz, OCHOMe), 4.03–4.04 (m, 1 H, TBSOCH₂CHCHOH) $3.92 (dd, 1 H, J = 10.3 Hz, J = 6.5 Hz, one of TBSOCH_2), 3.83$ $(dd, 1 H, J = 10.3 Hz, J = 5.5 Hz, one of TBSOCH_2), 3.80 (ddd, J)$ 1 H, J = 9.6 Hz, J = 7.8 Hz, J = 2.1 Hz, OCH(OMe)CHOH), 3.55 (s, 3 H, OCH₃), 3.41-3.45 (m, 2 H, BnOCH and TBSOCH₂CH), 2.48 (s, 1 H, OH), 2.38 (d, 1 H, J = 2.1 Hz, OH), 0.91 (s, 9 H, SiC(CH₃)₃), 0.09 (s, 6 H, Si(CH₃)₂); IR (KBr) 3540, 3420, 2950, 2920, 2880, 2840, 1460, 1385, 1250, 1195, 1135, 1090, 1065, 845, 745, 700 cm⁻¹; EIMS m/e (relative intensity) 309 (1.6), 291 (0.7), 91 (100); CIHRMS calcd for C₂₀H₃₄O₆Si 399.2203, found 399.2214. Anal. Calcd for C₂₀H₃₄O₆Si: C, 60.26; H, 8.60. Found: C, 60.13;

H, 8.68.

Methyl 6-O-[(1,1-Dimethylethyl)dimethylsilyl]-2,4-di-Omethyl-3-O-(phenylmethyl)- β -D-galactopyranoside (14). Two parallel reactions with diol 13 (14.2 g each) were carried out. A solution of diol 13 (14.2 g, 0.0358 mol) in THF (100 mL) was added slowly to a mixture of pentane-washed NaH (60% mineral oil dispersion, 4.3 g, 0.107 mol) and MeI (22 mL, 0.358 mol) in THF (400 mL) at room temperature. After 1.5 h, both reaction mixtures were poured slowly into cold (0 °C) saturated NH₄Cl. The resulting mixture was extracted with $Et_2O(3\times)$, and the combined organic layer was washed with brine $(1\times)$, dried (MgSO₄), filtered, and concentrated to give crude 14 (28.9 g, 95%) as a pale yellow soft solid. Purification can be carried out by chromatography (20% EtOAc-hexane) or distillation (158-178 °C, 0.05 mmHg). A small amount was purified further by dissolving in acetonitrile, washing with hexanes, concentrating, and redistilling (Kugelrohr) to give a white solid: mp 51-52 °C; $[\alpha]^{25}_{D} = -34.0^{\circ}$ (c = 1.19, CHCl₃); ¹H NMR δ 7.29-7.42 (m, 5 H, ArH), 4.73 (AB quartet, $2 \text{ H}, J = 12.0 \text{ Hz}, \text{PhCH}_2\text{O}), 4.14 (d, 1 \text{ H}, J = 7.1 \text{ Hz}, \text{OCHOMe}),$ 3.80 (dd, 1 H, J = 9.6 Hz, J = 8.2 Hz, one of TBSOCH₂), 3.71 (dd, 1 H, J = 9.6 Hz, J = 5.5 Hz, one of TBSOCH₂), 3.62 (s, 3 H, OCH₃), 3.60-3.61 (m, 1 H, TBSOCH₂CHCHOMe), 3.59 (s, 3 H, OCH₃), 3.51 (s, 3 H, OCH₃), 3.43 (dd, 1 H, J = 9.7 Hz, J =7.2 Hz, OCH(OMe)CHOMe), 3.38 (dd, 1 H, J = 9.6 Hz, J = 2.8Hz, BnOCH), 3.34 (br dd, 1 H, J = 8.2 Hz, J = 5.4 Hz, TBSOCH₂CH), 0.91 (s, 9 H, SiC(CH₃)₃), 0.09 (s, 3 H, SiCH₃), 0.08 (s, 3 H, SiCH₃); IR (KBr) 2940, 2920, 2870, 2840, 1465, 1380, 1365, 1250, 1105, 1075, 835 cm⁻¹; EIMS m/e (relative intensity) 369 (0.5), 265 (10), 151 (30), 135 (37), 91 (100); CIHRMS calcd for C₂₂H₃₈O₆Si 427.2516, found 427.2520.

Anal. Calcd for $C_{22}H_{38}O_6Si: C, 61.94; H, 8.98.$ Found: C, 62.12; H, 9.19.

Methyl 2,4-Di-O-methyl-3-O-(phenylmethyl)-β-Dgalactopyranoside (15). A mixture of fully-protected galactose 14 (2.5 g, 5.87 mmol) in THF (10 mL) and 3:1 HOAc-H₂O was stirred at room temperature for 20 h. Volatiles were removed under reduced pressure, toluene was added, and the mixture was reconcentrated. After azeotroping with toluene two or three times, a pale yellow solid was obtained. Purification by chromatography $(50\% \text{ EtOAc-hexane} \rightarrow 100\% \text{ EtOAc})$ afforded 15 (1.75 g, 95%)as a white solid. A small amount was purified further by recrystallization (Et₂O-hexane) for characterization: mp (Et₂O-hexane) 69–70 °C; $[\alpha]^{25}_{D} = -29.5^{\circ}$ (c = 1.06, CHCl₃); ¹H NMR δ 7.30-7.40 (m, 5 H, ArH), 4.76 (AB quartet, 2 H, J = 12.0 Hz, $PhCH_2O$), 4.18 (d, 1 H, J = 7.1 Hz, OCHOMe), 3.91 (dd, 1 H, J = 11.3 Hz, J = 7.1 Hz, one of HOCH₂), 3.73 (dd, 1 H, J = 11.3Hz, J = 4.9 Hz, one of HOCH₂), 3.62 (s, 3 H, OCH₃), 3.58 (s, 3 H, OCH₃), 3.54 (s, 3 H, OCH₃), 3.53 (dd, 1 H, J = 2.7 Hz, J =1.0 Hz, HOCH₂CHCHOMe), 3.43 (dd, 1 H, J = 9.7 Hz, J = 6.9Hz, OCH(OMe)CHOMe), 3.40 (dd, 1 H, J = 9.7 Hz, J = 3.0 Hz, BnOCH), 3.40-3.43 (m, 1 H, HOCH₂CH), 2.01 (br s, 1 H, OH); IR (KBr) 3320, 3220, 2940, 2865, 2840, 1455, 1370, 1125, 1075, 705 cm⁻¹; EIMS m/e (relative intensity) 211 (0.7), 164 (11), 151 (30), 135 (52), 101 (100), 91 (88); CIHRMS calcd for C₁₆H₂₄O₆ 313.1651, found 313.1654.

Anal. Calcd for $\rm C_{16}H_{24}O_6:$ C, 61.52; H, 7.74. Found: C, 61.50, H, 7.58.

Methyl 6-Deoxy-6-iodo-2,4-di-O-methyl-3-O-(phenylmethyl)- β -D-galactopyranoside (16). Triphenylphosphine (1.18 g, 4.49 mmol) was added to a solution of I_2 (1.06 g, 4.17 mmol) in benzene (20 mL). After stirring for 5-10 min, to the orangeyellow heterogeneous mixture were added pyridine (0.725 mL, 8.97 mmol) and a solution of alcohol 15 (1.0 g, 2.05 mmol) in benzene (50 mL). The resulting mixture was heated to reflux for 1 h. The mixture was allowed to cool to room temperature, diluted with EtOAc, washed with saturated $Na_2S_2O_3$ (2×), saturated $CuSO_4$ (2×), and brine (2×), dried (MgSO₄), filtered, and concentrated. Purification by chromatography $(10 \rightarrow 20\% \text{ EtOAc}$ hexane) gave 16 (1.04 g, 77%) as a white solid. A small amount was purified further by recrystallization (Et₂O-hexane) for characterization: mp (Et₂O-hexane) 105-106 °C; $[\alpha]^{26}$ _D = -26.6° $(c = 0.44, \text{CHCl}_3)$; ¹H NMR δ 7.31–7.41 (m, 5 H, ÅrH), 4.73 (AB quartet, 2 H, J = 11.9 Hz, PhCH₂O), 4.14-4.16 (m, 1 H, $\hat{O}CHOMe$), 3.78 (br d, 1 H, J = 1.2 Hz, BnOCH), 3.65 (s, 3 H, OCH₃), 3.61 (s, 3 H, OCH₃), 3.54 (s, 3 H, OCH₃), 3.51 (br t, 1 H, J = 7.0 Hz, ICH₂CH), 3.37–3.41 (overlapping dd, 1 H, J = 4.4 Hz, J = 1.4 Hz, OCH(OMe)CHOMe and dd, 1 H, J = 9.9 Hz, J = 7.4Hz, one of ICH₂), 3.38-3.40 (m, 1 H, ICH₂CHCHOMe), 3.33 (dd, 1 H, J = 9.8 Hz, J = 6.5 Hz, one of ICH₂); IR (KBr) 2930, 2840, 1460, 1370, 1205, 1125, 1095, 1080, 1040, 980, 735 cm⁻¹; EIMS m/e(relative intensity) 255 (0.4), 164 (6), 151 (3), 135 (16), 101 (100), 91 (35); CIHRMS calcd for C₁₆H₂₃IO₅ 423.0668, found 423.0642. Anal. Calcd for C₁₆H₂₃IO₅: C, 45.51; H, 5.49. Found: C, 45.70; H. 5.42.

5.6-Dideoxy-2,4-di-O-methyl-3-O-(phenylmethyl)-Larabino-hex-5-enose (17). Activated Zn powder (1.55 g, 23.7 mmol) was added to a solution of iodide 16 (0.50 g, 1.18 mmol) in 95% EtOH (15 mL), and the resulting mixture was heated to reflux for 45 min. The reaction mixture was allowed to cool to room temperature and filtered through a Celite pad. The filtrate was concentrated, and the residue was dissolved in Et₂O. The resulting organic layer was washed with saturated $Na_2S_2O_3$ (1×) and brine $(1\times)$, dried (MgSO₄), filtered, and concentrated. Purification by chromatography (30% Et₂O-hexane) afforded 17 (0.297 g, 95%) as a clear oil: $[\alpha]^{25}_{D} = +86.0^{\circ}$ (c = 1.3, CHCl₃); ¹H NMR δ 9.67 (d, 1 H, J = 1.6 Hz, CHO), 7.24–7.32 (m, 5 H, ArH), 5.75-5.82 (m, 1 H, CH2=CH), 5.36-5.39 (overlapping d, 1 H, J = 16.3 Hz, trans-CH₂=CH, and d, 1 H, J = 11.2 Hz, cis-CH₂=CH), 4.54 (AB quartet, 2 H, J = 11.2 Hz, PhCH₂O), 3.83-3.84 (m, 1 H, OHCCH), 3.77-3.78 (overlapping d, 1 H, J =3.4 Hz, CH_2 =CHCH, and d, 1 H, J = 1.7 Hz, BnOCH), 3.5 (s, 3 H, OCH₃), 3.25 (s, 3 H, OCH₃); IR (thin film) 2935, 2900, 2825, 1730, 1455, 1200, 1100, 940, 745, 705 cm⁻¹; EIMS m/e (relative intensity) 232 (0.2), 201 (0.2), 191 (7), 164 (18), 135 (18), 128 (13), 91 (100); CIHRMS calcd for C₁₅H₂₀O₄ 265.1440, found 265.1453.

[S-[R*,R*-(E,E)]]-4,6-Dimethoxy-2,8-dimethyl-5-(phenylmethoxy)-2,7-nonadienedioic Acid Dimethyl Ester (20). A stream of O₃ was bubbled through a solution of olefin-aldehyde 17 (110 mg, 0.417 mmol) in CH_2Cl_2 (4 mL) at -78 °C until the blue color persisted. N2 was bubbled through the system, and a solution of triphenylphosphine (328 mg, 1.25 mmol) in CH₂Cl₂ (2 mL) was added. The cold bath was removed, and the mixture was allowed to stir at room temperature for 17 h. The reaction mixture was cooled to 0 °C and a solution of triphenylphosphorane 19¹⁵ (580 mg, 1.67 mmol) in CH₂Cl₂ (2 mL) was added dropwise. The reaction mixture was allowed to warm to room temperature gradually. After 72 h, more phosphorane 19 (290 mg, 0.835 mmol) in CH₂Cl₂ (1 mL) was added at 0 °C. The mixture was stirred for another 24 h at room temperature. Concentration and purification by chromatography ($10 \rightarrow 50\%$ Et₂O-hexane) afforded 20 (109 mg, 64%) as a clear oil: $[\alpha]^{25}_{D} = +66.7^{\circ}$ (c = 1.31, CHCl₃); ¹H NMR δ 725–7.30 (m, 5 H, ArH), 6.71 (dd, 1 H, J = 9.0 Hz, J = 1.4 Hz, C=CH), 6.61 (dd, 1 H, J = 9.4 Hz, J = 1.4 Hz, C=CH), 4.53 (apparent d [close AB quartet], 2 H, $\Delta \nu = 1.8$ Hz, PhCH₂O), 4.25-4.30 (overlapping dd, 1 H, J = 9.0 Hz, J = 3.5Hz, C=CHCHOMe, and dd, 1 H, J = 9.4 Hz, J = 6.9 Hz, C= CHCHOMe), 3.77 (s, 3 H, CO₂CH₃), 3.76 (s, 3 H, CO₂CH₃), 3.49 $(dd, 1 H, J = 6.7 Hz, J = 3.5 Hz, BnOCH), 3.31 (s, 3 H, OCH_3),$ 3.28 (s, 3 H, OCH₃), 1.89 (d, 3 H, J = 1.4 Hz, C=C(CH₃)), 1.87 $(d, 3 H, J = 1.4 Hz, C = C(CH_3));$ IR (thin film) 2920, 2890, 2820, 1720, 1710, 1650, 1435, 1240, 1190, 1135, 1085, 1025, 750, 700 cm⁻¹; EIMS m/e (relative intensity) 315 (0.1), 263 (2), 231 (2), 203 (1), 143 (100), 117 (0.6), 91 (33); CIHRMS calcd for C₂₂H₃₀O₇ 407.2069, found 407.2079.

Anal. Calcd for $C_{22}H_{30}O_7$: C, 65.01; H, 7.44. Found: C, 65.05; H, 7.46.

2,4-Di-O-methyl-3-O-(phenylmethyl)-D-galactose (21). A mixture of methyl glycoside 14 (45.0 g, 0.106 mol) in 3 M HCl (1.1 L) and THF (0.7 L) was heated to reflux for 21 h. The mixture was allowed to cool to room temperature and saturated with NaCl. The resulting mixture was extracted with CH_2Cl_2 (5×), and the combined organic layer was dried (MgSO₄), filtered, and concentrated. Purification by chromatography ($CH_2Cl_2 \rightarrow 20\%$) iPrOH-CH₂Cl₂) gave 21 (21.2 g, 68%) as a clear gum. Continuous liquid-liquid extraction of the NaCl-saturated aqueous layer with Et₂O for 48 h afforded, after concentration of the organic layer and chromatography, additional 21 (1.91 g, 73% combined yield): ¹H NMR (both anomers) δ 7.29–7.40 (m, 10 H), 5.44 (t, 1 H, J = 2.9 Hz), 4.71-4.80 (m, 4 H), 4.59 (t, 1 H, J = 6.8 Hz), 4.02-4.05 (m, 1 H), 3.99 (br d, 1 H, J = 6.6 Hz), 3.85-3.93 (m, 2 H), 3.81(dd, 1 H, J = 9.9 Hz, J = 2.9 Hz), 3.67-3.73 (overlapping dd, 1 H, J = 9.8 Hz, J = 3.5 Hz, and m, 2 H), 3.59 (s, 3 H), 3.64 (br d, 1 H, J = 2.0 Hz), 3.59 (s, 3 H), 3.57 (s, 6 H), 3.49–3.53 (m, 2 H), 3.37-3.46 (m, 3 H), 2.56 (br d, 1 H, J = 6.0 Hz), 2.41 (br d, 1 H, J = 5.5 Hz; IR (thin film) 3380, 2920, 2825, 1495, 1450, 1360, 1190, 1085, 975, 735, 700 cm⁻¹; EIMS m/e (relative intensity) 267

(0.3), 230 (0.4), 217 (0.9), 189 (3), 164 (2), 135 (9), 101 (100), 91 (43); CIHRMS calcd for $C_{15}H_{22}O_6$ 299.1494, found 299.1493.

2,4-Di-O-methyl-3-O-(phenylmethyl)-D-galactol (22). NaBH₄ (5.3 g, 0.141 mol) was added in portions to a solution of hemiacetal 21 (21.0 g, 0.0705 mol) in absolute EtOH (700 mL). The resulting mixture was stirred at room temperature for 5 h. EtOH was removed under reduced pressure, and the concentrate was cooled to 0 °C. Cold (0 °C) saturated NH4Cl (100 mL) was added slowly, in portions. After stirring for 10-15 min at room temperature, the mixture was extracted with EtOAc $(6\times)$. The combined organic layer was dried (MgSO₄), filtered, and concentrated to give crude 22 (19.1 g, 90%) as a white solid. A small amount was purified by recrystallization (EtOAc) for characterization: mp (EtOAc) 117–118 °C; $[\alpha]^{25}_{D} = +4.15^{\circ}$ (c = 0.97, MeOH); ¹H NMR & 7.32-7.37 (m, 5 H, ArH), 4.73 (AB quartet, $2 \text{ H}, J = 11.3 \text{ Hz}, \text{PhCH}_2\text{O}), 3.91-3.92 \text{ (m, 1 H, HOCH}_2\text{CHOH}),$ 3.81-3.83 (m, 2 H, BnOCH and one of HOCH₂CHOMe), 3.74-3.80 (m, 2 H, one of HOC H_2 CHOH and one of HOC H_2 CHOMe), 3.69 (dd, 1 H, J = 11.0 Hz, J = 4.6 Hz, one of HOCH₂CHOH), 3.51 (s, 3 H, OCH₃), 3.49 (s, 3 H, OCH₃), 3.45-3.52 (m, 2 H, both MeOCH), 3.07 (br s, 1 H, OH), 2.18 (br s, 1 H, OH), 1.56 (br s, 1 H, OH); IR (KBr) 3430, 3260, 2920, 2825, 1465, 1450, 1400, 1330, 1225, 1185, 1115, 1090, 1040, 1020, 860, 750, 695 cm⁻¹; EIMS m/e(relative intensity) 269 (0.2), 251 (0.3), 237 (1), 223 (2), 207 (2), 195 (2), 163 (7), 135 (7), 101 (51), 91 (100); CIHRMS calcd for C₁₅H₂₄O₆ 301.1651, found 301.1644.

Anal. Calcd for $C_{15}H_{24}O_6$: C, 59.98; H, 8.05. Found: C, 60.04; H, 8.27.

2,4-Di-O-methyl-5,6-O-(1-methylethylidene)-3-O-(phenylmethyl)-D-galactol (23). p-Toluenesulfonic acid (1.0 g, 6.3 mmol) followed by 3-Å molecular sieves was added to a suspension of crude triol 22 (19.0 g) in acetone (500 mL). The mixture was stirred at room temperature for 4 h, and solid NaHCO₃ (1.0 g) was added. The resulting mixture was stirred for 15 min and filtered through a Celite-MgSO4 pad. The filtrate was concentrated, and the residue was dissolved in EtOAc. The organic layer was washed with $H_2O(1\times)$ and brine (2×), dried (MgSO₄), filtered, and concentrated. Purification by chromatography (Et₂O) afforded 23 (19.1 g, 89%) as a pale yellow oil: $[\alpha]^{25}_{D} = +16.8^{\circ}$ (c = 1.13, CHCl₃); ¹H NMR δ 7.30-7.36 (m, 5 H, ArH), 4.67 (apparent d [close AB quartet], 2 H, $\Delta \nu = 1.6$ Hz, PhCH₂O), 4.33-4.67 (m, 1 H, C(CH₃)₂OCH), 4.01 (dd, 1 H, J = 8.1 Hz, J = 6.4 Hz, one of $C(CH_3)_2OCH_2$, 3.78–3.80 (m, 2 H, HOCH₂), 3.72 (t, 1 H, J = 8.0 Hz, one of $C(CH_3)_2OCH_2$, 3.61 (dd, 1 H, J = 6.7 Hz, J = 3.8Hz, BnOCH), 3.56 (s, 3 H, OCH₃), 3.46 (s, 3 H, OCH₃), 3.43-3.47 (m, 2 H, both MeOCH), 2.37 (br s, 1 H, OH), 1.45 (s, 3 H, CCH₃), 1.38 (s, 3 H, CCH₃); IR (thin film) 3450, 2980, 2920, 2820, 1490, 1450, 1365, 1250, 1210, 1085, 850, 735, 700 cm⁻¹; EIMS m/e(relative intensity) 325 (0.9), 282 (1), 251 (0.6), 233 (6), 207 (4), 175 (4), 163 (3), 145 (9), 101 (100), 91 (98); CIHRMS calcd for C₁₈H₂₈O₆ 341.1964, found 341.1977.

2,4-Di-O-methyl-5,6-O-(1-methylethylidene)-3-O-(phenylmethyl)-D-galactose (24). A solution of DMSO (19.8 mL, 0.279 mol) in CH₂Cl₂ (30 mL) was added slowly to a cold (-78 °C) solution of oxalyl chloride (9.7 mL, 0.112 mol) in CH_2Cl_2 (200 mL). After 15 min, alcohol 23 (19.0 g, 0.056 mol) in CH₂Cl₂ (70 mL) was added. The resulting mixture was stirred for 20 min, followed by addition of Et₃N (78 mL, 0.559 mol). The cooling bath was removed, and after 25 min, the mixture was poured over H₂O. The organic layer was separated and washed with 1 N HCl $(2\times)$, H₂O $(3\times)$, and brine $(1\times)$, dried (MgSO₄), filtered, and concentrated to yield crude 24 (18.0 g) as a yellow oil. A small amount was purified by chromatography (30% EtOAc-hexane) for characterization: ¹H NMR δ 9.70 (d, 1 H, J = 1.6 Hz, CHO), 7.28-7.36 (m, 5 H, ArH), 4.55 (apparent d [close AB quartet], 2 H, $\Delta \nu = 2.6$ Hz, PhCH₂O), 4.27–4.31 (m, 1 H, C(CH₃)₂OCH), 3.99 $(dd, 1 H, J = 8.2 Hz, J = 6.4 Hz, one of C(CH_3)_2OCH_2), 3.91 (dd, 1 H, J = 8.2 Hz, J = 6.4 Hz, one of C(CH_3)_2OCH_2)$ 1 H, J = 7.9 Hz, J = 3.4 Hz, BnOCH, 3.82 (dd, 1 H, J = 3.4 Hz,J = 1.7 Hz, OHCCH), 3.77 (t, 1 H, J = 8.0 Hz, one of C-(CH₃)₂OCH₂), 3.53 (s, 3 H, OCH₃), 3.48 (s, 3 H, OCH₃), 3.40 (dd, $1 \text{ H}, J = 7.9 \text{ Hz}, J = 5.1 \text{ Hz}, C(CH_3)_2OCHCH), 1.44 (s, 3 \text{ H}, CCH_3),$ 1.38 (s, 3 H, CCH₃); IR (thin film) 2980, 2920, 2820, 1725, 1450, 1380, 1370, 1250, 1210, 1090, 850, 700 cm⁻¹; EIMS m/e (relative intensity) 323 (0.4), 265 (2), 233 (0.6), 207 (3), 177 (1), 164 (7), 145 (3), 129 (9), 101 (100), 91 (58); CIHRMS calcd for C₁₈H₂₆O₆ 339.1807, found 339.1805.

⁽¹⁵⁾ House, H. O.; Rasmusson, G. H. J. Org. Chem. 1961, 26, 4278. Formation of the phosphonium salt was carried out in benzene at 50-55 °C for 2 days.

(2E)-2,3-Dideoxy-2-methyl-4,6-di-O-methyl-7,8-O-(1methylethylidene)-5-O-(phenylmethyl)-D-galacto-oct-2-enonic Acid Methyl Ester (25). The above crude aldehyde 24 (18.0 g) was dissolved in CH₂Cl₂ (300 mL) and cooled to 0 °C. A solution of triphenylphosphorane 1915 (25.0 g, 72.7 mmol) in CH₂Cl₂ (100 mL) was added dropwise, and the resulting mixture was allowed to warm to room temperature overnight (12 h). The reaction mixture was concentrated and purified by chromatography (50% Et₂O-hexane) to afford 25 (20.5 g, 90% overall, two steps) as a pale yellow oil: $[\alpha]^{25}_{D} = +47.6^{\circ}$ (c = 0.97, CHCl₃); ¹H NMR δ 7.27-7.32 (m, 5 H, ArH), 6.85 (dd, 1 H, J = 8.9 Hz, J = 1.5 Hz, C=CH), 4.56 (apparent d [close AB quartet], 2 H, $\Delta \nu = 1.6$ Hz, PhCH₂O), 4.27-4.34 (overlapping ddd, 1 H, J = 8.1 Hz, J = 6.3Hz, J = 4.2 Hz, C(CH₃)₂OCH, and dd, 1 H, J = 9.0 Hz, J = 2.4Hz, C=CHCHOMe), 4.00 (dd, 1 H, J = 8.0 Hz, J = 6.3 Hz, one of $C(CH_3)_2OCH_2$, 3.81 (t, 1 H, J = 8.1 Hz, one of $C(CH_3)_2OCH_2$), 3.78 (s, 3 H, CO₂CH₃), 3.51 (s, 3 H, OCH₃), 3.50-3.53 (m, 1 H, BnOCH), 3.47 (dd, 1 H, J = 8.7 Hz, J = 4.1 Hz, C-(CH₃)₂OCHCHOMe), 1.95 (d, 3 H, J = 1.3 Hz, C=C(CH₃)), 1.45 (s, 3 H, CCH₃), 1.37 (s, 3 H, CCH₃); IR (thin film) 2980, 2920, 2820, 1715, 1450, 1435, 1315, 1245, 1140, 1085, 700 cm⁻¹; EIMS m/e (relative intensity) 393 (0.1), 287 (0.1), 265 (5), 207 (7), 143 (100), 101 (24), 91 (40); CIHRMS calcd for C₂₂H₃₂O₇ 409.2226, found 409.2203.

Anal. Calcd for $C_{22}H_{32}O_7$: C, 64.68; H, 7.90. Found: C, 64.73; H, 7.94.

[S-[R*,R*-(E,E)]]-4,6-Dimethoxy-2,8-dimethyl-5-(phenylmethoxy)-2,7-nonadienedioic Acid Dimethyl Ester (20). A mixture of acetonide-ester 25 (2.02 g, 4.95 mmol) in THF (25 mL) and 3:1 HOAc-H₂O (25 mL) was heated to reflux for 5 h. Volatiles were removed under reduced pressure, toluene was added, and the mixture reconcentrated. After azeotroping with toluene two or three times, the crude product (diol) was obtained as a pale yellow oil.

The crude diol obtained above was dissolved in 4:1 THF-H₂O (50 mL), and NaIO₄ (1.27 g, 5.94 mmol) was added. The resulting mixture was stirred at room temperature for 5 h. The reaction mixture was filtered, and the filtrate was extrated with EtOAc (2×). The combined organic layer was washed with brine (1×), dried (MgSO₄), filtered, and concentrated to give the crude product (aldehyde) as a pale yellow oil.

The above crude aldehyde was dissolved in CH_2Cl_2 (40 mL) and cooled to 0 °C. A solution of triphenylphosphorane 19¹⁵ (2.1 g, 5.94 mmol) in CH_2Cl_2 (10 mL) was added dropwise. The resulting mixture was allowed to warm to room temperature overnight (12 h). The reaction mixture was concentrated and purified by chromatography (25% EtOAc-hexane) to afford 20 (1.6 g, 79% overall, three steps) as a clear oil, identical by ¹H NMR analysis with the compound obtained from olefin-aldehyde 17.

[S-[R*,R*-(E,E)]]-5-Hydroxy-4,6-dimethoxy-2,8-dimethyl-2,7-nonadienedioic Acid Dimethyl Ester (26). Iodotrimethylsilane (with traces of HI) (0.70 mL, 4.93 mmol) was added dropwise to a solution of diester 20 (1.54 g, 3.79 mmol) in CH₂Cl₂ (35 mL) at room temperature. After 25 min, MeOH (1 mL) was added to the orange-red solution. The mixture was diluted with EtOAc and washed with saturated $Na_2S_2O_3$ (1x), saturated NaHCO₃ (1x), and brine (1x), dried (MgSO₄), filtered, and concentrated. Purification by chromatography $(30 \rightarrow 50\% \text{ EtOAc}$ hexane) yielded 26 (1.06 g, 88%) as a clear oil: $[\alpha]^{25}_{D} = +46.2^{\circ}$ $(c = 1.03, \text{CHCl}_3)$; ¹H NMR δ 6.58–6.62 (overlapping dd, 1 H, J = 9.3 Hz, J = 1.5 Hz, C=CH, and dd, 1 H, J = 9.5 Hz, J = 1.5 Hz, C=CH), 4.17 (dd, 1 H, J = 9.5 Hz, J = 5.1 Hz, C= CHCHOMe), 4.10 (dd, 1 H, J = 9.3 Hz, J = 5.6 Hz, C= CHCHOMe), 3.77 (s, 3 H, CO₂CH₃), 3.75 (s, 3 H, CO₂CH₃), 3.64 (apparent q, 1 H, J = 5.3 Hz, HOCH), 3.32 (s, 3 H, OCH₃), 3.30 $(s, 3 H, OCH_3), 2.57 (d, 1 H, J = 5.4 Hz, OH), 1.92 (d, 3 H, J =$ 1.5 Hz, C=C(CH_3)), 1.91 (d, 3 H, J = 1.5 Hz, C=CCH₃); IR (thin film) 3475, 2980, 2920, 2820, 1720, 1710, 1650, 1435, 1385, 1250, 1190, 1130, 1085, 960, 935, 750 cm⁻¹; EIMS m/e (relative intensity) 316 (0.7), 253 (1), 221 (1), 210 (2), 193 (1), 173 (1), 144 (100), 143 (17), 129 (17); EIHRMS calcd for $C_{15}H_{24}O_7$ 316.1522, found 316.1520

Anal. Calcd for $C_{15}H_{24}O_7$: C, 56.95; H, 7.65. Found: C, 57.06, H, 7.90.

(2E)-2,3-Dideoxy-2-methyl-4,6-di-O-methyl-7,8-O-(1methylethylidene)-5-O-(phenylmethyl)-D-galacto-oct-2-en-

itol (27). Lithium triethylborohydride (1 M solution in THF, 110 mL, 0.110 mol) was added dropwise to a cold (-78 °C) solution of ester 25 (19.9 g, 0.0485 mol) in THF (400 mL). The reaction was allowed to warm to -20 °C during 1.5 h. The mixture was poured over cold (0 °C) saturated NH₄Cl (200 mL), allowed to attain room temperature, and stirred for 15 min. The resulting mixture was extracted with EtOAc $(3\times)$, and the combined organic layer was dried (MgSO₄), filtered, and concentrated. Purification by chromatography (50% EtOAc-hex \rightarrow 100% EtOAc) gave 27 (19.0 g, quantitative) as a clear oil: $[\alpha]^{25}_{D} = +65.2^{\circ}$ (c = 1.32, CHCl₃); ¹H NMR δ 7.27–7.35 (m, 5 H, ArH), 5.47 (br dd, 1 H, J = 9.2 Hz, J = 1.4 Hz, C=CH), 4.61 (narrow AB quartet, 2 H, J = 11.3 Hz, PhCH₂O), 4.30-4.34 (m, 1 H, C(CH₃)₂OCH), 4.17 (d, 1 H, J = 9.2 Hz, C=CHCHOMe), 3.40 (dd, 1 H, J = 8.0 Hz, J= 6.3 Hz, one of $C(CH_3)_2OCH_2$), 3.94 (s, 2 H, C= CCH_2OH), 3.80 (t, 1 H, J = 8.1 Hz, one of $C(CH_3)_2OCH_2$), 3.50 (s, 3 H, OCH₃), 3.46-3.47 (m, 2 H, BnOCH and C(CH₃)₂OCHCHOMe), 3.26 (s, $3 H, OCH_3$, 1.71 (d, $3 H, J = 1.2 Hz, C=CCH_3$), 1.44 (s, 3 H, CCH₃), 1.36 (s, 3 H, CCH₃); IR (thin film) 3460, 2980, 2930, 2830, 1455, 1370, 1220, 1085, 890, 860, 740, 700 cm⁻¹; EIMS m/e (relative intensity) 265 (2), 233 (2), 207 (11), 175 (2), 141 (5), 115 (71), 101 (28), 98 (100).

Anal. Calcd for ${\rm C_{21}H_{32}O_6}{:}$ C, 66.29; H, 8.48. Found: C, 66.55; H, 8.54.

(2E)-2,3-Dideoxy-1-chloro-2-methyl-4,6-di-O-methyl-7,8-O-(1-methylethylidene)-5-O-(phenylmethyl)-D-galactooct-2-ene (28). The procedure of Collington and Myers was employed.¹⁶ A solution of LiCl (2.3 g, 53.6 mmol) in DMF (46 mL) was added to a solution of allylic alcohol 27 (18.5 g, 48.7 mmol) in s-collidine (7.7 mL, 58.4 mmol). The mixture obtained was cooled to 0 °C, and after a few minutes, a white precipitate formed. Trifluoromethanesulfonyl chloride (6.2 mL, 80.1 mmol) was added dropwise. At 1.5 and 1 h intervals, more reagents (same amounts as above) were added. After last addition, the yelloworange mixture was kept at 0 °C for an addition, the yellow-orange mixture was kept at 0 °C for an additional hour. The reaction was poured over ice-H₂O (1.5 L), and the aqueous layer was extracted with Et_2O (3×). The combined organic layer was washed with saturated $CuSO_4$ (3×), saturated NaHCO₃ (2×), and brine (2×), dried (MgSO₄), filtered, and concentrated. Purification by chromatography $(10 \rightarrow 40\% \text{ EtOAc-hexane})$ afforded 28 (13.1 g, 67%) as a pale yellow oil and recovered 27 (1.6 g, 8.6%). 28: [a]²⁵_D = +35.6° (c = 2.34, CHCl₃); ¹H NMR δ 7.28–7.33 (m, 5 H, ArH), 5.61 (d, 1 H, J = 9.0 Hz, C=CH), 4.61 (apparent d [close AB quartet], 2 H, $\Delta \nu = 1.9$ Hz, PhCH₂O), 4.30-4.33 (m, 1 H, $C(CH_3)_2OCH)$, 4.16 (dd, 1 H, J = 9.0 Hz, J = 2.2 Hz, C= CHCHOMe), 4.00 (dd, 1 H, J = 7.8 Hz, J = 6.7 Hz, one of $C(CH_3)_2OCH_2$, 3.98 (s, 2 H, C=CCH₂Cl), 3.80 (t, 1 H, J = 8.0 Hz, one of C(CH₃)₂OCH₂), 3.51 (s, 3 H, OCH₃), 3.48 (dd, 1 H, J = 8.6 Hz, J = 2.4 Hz, BnOCH), 3.46 (dd, 1 H, J = 8.6 Hz, J =3.7 Hz, C(CH₃)₂OCHCHOMe), 3.28 (s, 3 H, OCH₃), 1.85 (s, 3 H, C=CCH₃), 1.45 (s, 3 H, CCH₃), 1.37 (s, 3 H, CCH₃); IR (thin film) 2980, 2930, 2820, 1455, 1370, 1265, 1215, 1085, 890, 745, 700 $\rm cm^{-1};$ EIMS m/e (relative intensity) 383 (0.2), 319 (0.1), 305 (0.3), 265 (3), 231 (0.4), 229 (1), 207 (18), 171 (1), 169 (4), 135 (29), 133 (100), 98 (35).

Anal. Calcd for $C_{21}H_{31}ClO_5$: C, 63.23; H, 7.83. Found: C, 62.85; H, 7.66.

(2E)-2,3-Dideoxy-1-cyano-2-methyl-4,6-di-O-methyl-7,8-O-(1-methylethylidene)-5-O-(phenylmethyl)-D-galactooct-2-ene (29). NaCN (2.0 g, 40.8 mmol) was added to a solution of allylic chloride 28 (14.0 g, 35.1 mmol) in DMF (320 mL), and the resulting mixture was stirred at room temperature for 3 h. (The reaction was monitored closely by TLC [every 30 min, 50% EtOAc-hexane] in order to avoid excess formation of undesired α,β -unsaturated nitrile.) The mixture was poured over H₂O (3 L) and extracted with Et₂O (4×). The combined organic layer was washed with brine (1×), dried (MgSO₄), filtered, and concentrated. Purification by chromatography (20 → 80% Et₂Ohexane) afforded recovered 28 (1.1 g, 7.8%), α,β -unsaturated nitrile (3.1 g, 22%), and β,γ -unsaturated nitrile 29 (9.41 g, 69%) as a clear oil. 29: $[\alpha]^{25}_{D}$ = +62.5° (c = 1.06, CHCl₃); ¹H NMR δ 7.27-7.35 (m, 5 H, ArH), 5.56 (d, 1 H, J = 9.0 Hz, C==CH), 4.60 (AB quartet, 2 H, J = 11.2 Hz, PhCH₂O), 4.33 (br ddd, 1 H, J = 8.6 Hz, J = 6.4 Hz, J = 3.3 Hz, $C(CH_3)_2OCH$), 4.14 (br d, 1 H, J = 9.0 Hz, C—CHCHOMe), 4.01 (dd, 1 H, J = 7.9 Hz, J = 6.4 Hz, one of $C(CH_3)_2OCH_2$), 3.81 (t, 1 H, J = 8.1 Hz, one of $C(CH_3)_2OCH_2$), 3.5 (s, 3 H, OCH_3), 3.45–3.48 (m, 2 H, BnOCH and $C(CH_3)_2OCHCHOMe)$, 3.26 (s, 3 H, OCH_3), 2.98 (s, 2 H, CCH_2CN), 1.81 (s, 3 H, C—CCH_3), 1.45 (s, 3 H, CCH_3), 1.37 (s, 3 H, CCH_3); IR (thin film) 2985, 2920, 2820, 2250, 1455, 1370, 1215, 1090, 920, 890, 860, 740, 700 cm⁻¹; EIMS m/e (relative intensity) 307 (0.1), 299 (0.1), 265 (7), 233 (1), 207 (12), 185 (7), 160 (3), 145 (3), 124 (100), 101 (17), 91 (18); CIHRMS calcd for $C_{22}H_{31}NO_5$ 390.2280, found 390.2284.

(3E)-2,3,4-Trideoxy-3-methyl-5,7-di-O-methyl-8,9-O-(1methylethylidene)-6-O-(phenylmethyl)-D-galacto-non-3enitol (30). Diisobutylaluminum hydride (DIBAL-H, 1 M solution in hexanes, 27.8 mL, 27.8 mmol) was added dropwise to a solution of nitrile 29 (9.4 g, 24.2 mmol) in CH₂Cl₂ (300 mL) kept at -78 °C. After 25 min, more DIBAL-H (4.0 mL, 4.0 mmol) was added. The mixture was stirred for an additional 30 min, and absolute EtOH (3.5 mL) was added. The cold mixture was poured over EtOAc/saturated NH₄Cl and stirred for 0.5 h. Saturated potassium sodium tartrate (or saturated Na₂SO₄) was added, and the resulting mixture was stirred for 3 h. The organic layer was separated, and the aquoeus layer was reextracted with EtOAc (5×). The combined organic layer was dried (Na₂SO₄), filtered, and concentrated to yield the crude β , γ -unsaturated aldehyde (9.4 g) as a yellow oil.

The above crude aldehyde (9.4 g) was dissolved in absolute EtOH (300 mL) and cooled to 0 °C. NaBH₄ (1.1 g, 29.1 mmol) was added in portions, and the resulting mixture was kept at 0 °C for 2 h. EtOH was removed under reduced pressure, and the concentrated was immersed in an ice bath. Saturated NH4Cl (250 mL) was added slowly, in portions. The mixture was extracted with CH_2Cl_2 (3×), and the combined organic layer was dried (MgSO₄), filtered, and concentrated. Purification by chromatography (50 \rightarrow 75% Et₂O-hexane) afforded **30** (6.0 g, 63% overall, two steps) as a pale yellow oil: $[\alpha]^{25}_{D} = +27.2^{\circ} (c = 2.34, \text{CHCl}_3);$ ¹H NMR δ 7.26–7.33 (m, 5 H, ArH), 5.35 (d, 1 H, J = 9.3 Hz, C=CH), 4.63 (AB quartet, 2 H, J = 11.2 Hz, PhCH₂O), 4.31 (ddd, 1 H, J = 8.1 Hz, J = 6.3 Hz, J = 4.2 Hz, C(CH₃)₂OCH), 4.16 (dd, 1 H, J = 9.3 Hz, J = 2.7 Hz, C=CHCHOMe), 3.98 (dd, 1 H, J)= 8.0 Hz, J = 6.3 Hz, one of C(CH₃)₂OCH₂), 3.76 (t, 1 H, J = 8.1Hz, one of C(CH₃)₂OCH₂), 3.69-3.71 (m, 2 H, C=CCH₂), 3.50 (s, 3 H, OCH₃), 3.40-3.53 (m, 2 H, BnOCH and C-(CH₃)₂OCHCHOMe), 3.27 (s, 3 H, OCH₃), 2.25-2.34 (m, 2 H, CH_2OH), 1.75 (d, 3 H, J = 1.2 Hz, $C=CH_3$), 1.52 (br s, 1 H, OH), 1.43 (s, 3 H, CCH₃), 1.35 (s, 3 H, CCH₃); IR (thin film) 3460, 2980, 2930, 2820, 1450, 1380, 1370, 1215, 1085, 890, 740, 700 cm⁻¹; EIMS m/e (relative intensity) 286 (0.4), 271 (5), 233 (2), 207 (12), 196 (4), 177 (1), 129 (100), 91 (24); FABHRMS calcd for $C_{22}H_{34}O_6$ 395.2433, found 395.2452.

(3E)-2,3,4-Trideoxy-3-methyl-5,7-di-O-methyl-8,9-O-(1methylethylidene)-D-galacto-non-3-enitol (31). Na metal (2.0 g, 0.087 g-atom), cut in small pieces, was added to liquid NH₃ (ca. 200 mL) kept at -78 °C. To the resulting deep blue mixture was added a solution of alcohol 30 (5.9 g, 15.0 mmol) in THF (35 mL). The reaction mixture was stirred for 5 min, and solid NH₄Cl was added until the blue color disappeared. The cold bath was removed, and NH₃ was allowed to evaporate slowly. The residue was extracted with EtOAc $(3\times)$, and the combined organic layer was dried (MgSO₄), filtered, and concentrated. Purification by chromatography (80% EtOAc-hexane \rightarrow 100% EtOAc) gave 31 (4.1 g, 90%) as a pale yellow solid. A small sample was purified further by recrystallization (hexane) for characterization: mp (hexane) 52–53 °C; $[\alpha]^{25}_{D} = +51.0^{\circ}$ (c = 1.12, CHCl₃); ¹H NMR δ 5.29 (br d, 1 H, J = 9.3 Hz, C=CH), 4.27 (apparent td, 1 H, J = 7.9 Hz, J = 6.4 Hz, C(CH₃)₂OCH), 4.12 (dd, 1 H, J = 9.3 Hz, J = 3.6 Hz, C=CHCHOMe), 4.06 (dd, 1 H, J = 8.3 Hz, J = 6.4Hz, one of $C(CH_3)_2OCH_2$), 3.77 (t, 1 H, J = 8.2 Hz, one of C-(CH₃)₂OCH₂), 3.71-3.74 (m, 2 H, CH₂OH), 3.53 (s, 3 H, OCH₃), 3.46 (dd, 1 H, J = 7.4 Hz, J = 3.6 Hz, HOCH), 3.29-3.31 (m, 1)H, C(CH₃)₂OCHCHOMe), 3.29 (s, 3 H, OCH₃), 2.31-2.38 (m, 2 H, C=CCH₂), 1.77 (d, 3 H, J = 1.4 Hz, C=CCH₃), 1.42 (s, 3 H, CCH₃), 1.37 (s, 3 H, CCH₃); IR (KBr) 3460, 3400, 2980, 2920, 2820, 1440, 1415, 1380, 1370, 1255, 1160, 1110, 1060, 950, 855 cm^{-1} ; EIMS m/e (relative intensity) 289 (0.2), 271 (0.3), 257 (2), 197 (5), 175 (17), 155 (2), 141 (6), 129 (100), 117 (35), 97 (28); CIHRMS calcd

for C₁₅H₂₈O₆ 305.1964, found 305.1942.

Anal. Calcd for C₁₅H₂₈O₆: C, 59.19; H, 9.27. Found: C, 59.31; H. 9.19.

[4S-(2E,4R*,5S*,6R*,7E)]-5,10-Dihydroxy-4,6-dimethoxy-2,8-dimethyl-2,7-decadienoic Acid Methyl Ester (32). A mixture of diol 31 (4.0 g, 13.2 mmol) in THF (130 mL) and 3:1 HOAc-H₂O (130 mL) was heated to reflux for 2 h. Volatiles were removed under reduced pressure, toluene was added, and the mixture reconcentrated. After azeotroping with toluene twice, the crude tetraol (3.49 g) was obtained as a pale yellow solid.

The crude tetraol (3.49 g) obtained above was dissolved in 4:1 THF-H₂O (240 mL), and NaIO₄ (3.1 g, 14.5 mmol) was added. The resulting mixture was stirred at room temperature for 2 h. The reaction mixture was filtered through a Celite pad, and the filtrate was concentrated under reduced pressure by azeotroping with toluene several times. The crude aldehyde-diol (3.6 g) was obtained as a pale yellow gum. This aldehyde is very unstable and should be used immediately in the next step.

The above crude aldehyde (3.6 g) was dissolved in CH₂Cl₂ (115 mL) and cooled to 0 °C. A solution of triphenylphosphorane 19 (6.4 g, 18.4 mmol) in CH_2Cl_2 (15 mL) was added dropwise. The resulting mixture was allowed to warm to room temperature overnight (12 h). The reaction mixture was concentrated and purified by chromatorgaphy (2% MeOH-EtOAc) to afford 32 which coeluted with triphenylphosphine oxide (total mixture, 7.5 g): ¹H NMR δ 6.68 (dd, 1 H, J = 9.3 Hz, J = 1.4 Hz, MeO₂C-(Me)C=CH, 5.12 (br d, 1 H, J = 9.7 Hz, CH₂(Me)C=CH), 4.12 $(dd, 1 H, J = 9.4 Hz, J = 4.6 Hz, MeO_2C(Me)C=CHCH), 4.01$ (dd, 1 H, J = 9.6 Hz, J = 6.7 Hz, CH_2 (Me)C=CHCH), 3.77 (s, 3 H, CO_2CH_3), 3.73-3.76 (m, 2 H, CH_2OH), 3.64 (dd, 1 H, J =6.6 Hz, J = 4.7 Hz, CHOH), 3.29 (s, 3 H, OCH₃), 3.28 (s, 3 H, OCH_3), 2.33-2.36 (m, 2 H, C=CCH₂), 1.90 (d, 3 H, J = 1.4 Hz, C=CCH₃), 1.75 (d, 3 H, J = 1.3 Hz, C=CCH₃); IR (CHCl₃) 3450, 2990, 2940, 1710, 1440, 1380, 1255, 1125, 1090, 915, 700 cm⁻¹; EIMS m/e (relative intensity) 270 (1), 252 (1), 238 (1), 220 (0.4), 173 (6), 154 (3), 129 (100), 97 (45); CIHRMS calcd for $C_{15}H_{26}O_6$ 303.1807, found 303.1805.

[4S-(2E,4R*,5S*,6R*,7E)]-10-(Benzoyloxy)-5-hydroxy-4,6-dimethoxy-2,8-dimethyl-2,7-decadienoic Acid Methyl Ester (33). Benzoyl chloride (1.7 mL, 14.5 mmol) was added to a solution of diol 32 (containing triphenylphosphine oxide, 7.5 g) and pyridine (2.3 mL, 29.0 mmol) in THF (120 mL) at room temperature. After 4 h, additional pyridine (0.46 mL, 5.7 mmol) and benzoyl chloride (0.336 mL, 2.9 mmol) were added. The reaction was left a total of 7 h. The mixture was diluted with Et₂O, and the resulting organic layer was washed with 1 N HCl $(1\times)$ and brine $(1\times)$, dried (MgSO₄), filtered, and concentrated. Purification by chromatography (30% EtOAc-hexane) afforded 33 (2.84 g, 55% overall, four steps) as a pale yellow oil: $[\alpha]^{25}_{D}$ +27.8° (c = 2.86, CHCl₃); ¹H NMR δ 8.00 (d, 2 H, J = 7.3 Hz, o-ArH), 7.53 (br t, 1 H, J = 7.7 Hz, p-ArH), 7.41 (t, 2 H, J = 7.7Hz, m-ArH), 6.66 (d, 1 H, J = 9.5 Hz, MeO₂C(Me)C=CH), 5.19 $(d, 1 H, J = 9.7 Hz, CH_2(Me)C = CH), 4.39 - 4.47 (m, 2 H, CH_2OBz),$ 4.04 (dd, 1 H, J = 9.5 Hz, J = 4.4 Hz, MeO₂C(Me)C=CHCH), 3.93 (dd, 1 H, J = 9.6 Hz, J = 6.2 Hz, $CH_2(Me)C=CHCH$), 3.73 $(s, 3 H, CO_2CH_3), 3.62 (br dd, 1 H, J = 6.1 Hz, J = 4.6 Hz, CHOH),$ 3.21 (s, 3 H, OCH₃), 3.19 (s, 3 H, OCH₃), 2.48-2.57 (m, 2 H, C=CCH₂), 1.84 (s, 3 H, C=CCH₃), 1.76 (s, 3 H, C=CCH₃); IR (thin film) 3490, 2935, 2900, 2820, 1720, 1710, 1600, 1455, 1390, 1320, 1285, 1100, 970, 760, 720 cm⁻¹; EIMS m/e (relative intensity) 374 (0.2), 356 (0.3), 342 (0.3), 252 (0.4), 233 (1), 193 (2), 173 (3), 144 (58), 111 (100), 97 (18); CIHRMS calcd for C22H30O7 407.2069, found 407.2070.

2,3,7,8-Tetradeoxy-2,8-dimethyl-4,6-di-O-methyl-Lglycero-L-manno-nonaric Acid Dimethyl Ester (6). Glassware was flame-dried and allowed to cool to room temperature under Ar. A solution of diene 26 (1.05 g, 3.32 mmol) in degassed CH₂Cl₂ (10 mL) was added to a solution of freshly prepared Rh catalyst 10^{17} (0.375 g, 0.53 mmol) in degassed CH₂Cl₂ (70 mL) kept under Ar atmosphere. The contents were frozen by immersing in a liquid N₂ bath. The system was evacuated under high pressure while thawing, refilled with Ar, and allowed to warm to room temperature. The reaction mixture was transferred to a 350-mL

⁽¹⁷⁾ Morrissey, M. M. Ph.D. Dissertation, Harvard University, 1987.

glass-lined high-pressure Parr hydrogenation apparatus via a Teflon tubing under a positive pressure of N_2 . The hydrogenation reaction was run at room temperature at 1000 psi for 4 h (longer reaction time resulted in partial lactonization of tetrahydro product). The dark reddish-brown mixture was concentrated, adsorbed over silica gel and purified by chromatography (30 50% EtOAc-hexane) to give 6 (0.961 g, 90%) as a clear oil: ¹H NMR (major isomer) δ 3.70 (s, 3 H, CO₃CH₃), 3.68 (s, 3 H, $CO_{2}CH_{3}$, 3.52 (br t, 1 H, J = 5.0 Hz, HOCH), 3.43 (s, 3 H, OCH₃), 3.33 (s, 3 H, OCH₃), 3.29-3.32 (m. 1 H, MeOCH), 3.16 (ddd, 1 H, J = 8.1 Hz, J = 6.0 Hz, J = 3.1 Hz, MeOCH, 2.66–2.76 (m, 2 H, both MeO₂CCHMe), 2.32 (br s. 1 H. OH), 1.92-2.00 (m, 2 H, MeO_2CCHCH_2), 1.69 (ddd, 1 H, J = 14.5 Hz, J = 8.0 Hz, J = 3.7Hz, one of MeO_2CCHCH_2), 1.61 (ddd, 1 H, J = 14.2 Hz, J = 7.5Hz, J = 4.7 Hz, one of MeO₂CCHCH₂), 1.20 (d, 6 h, J = 4.6 Hz, both MeO₂CCHCH₃); IR (thin film) 3460, 2920, 2820, 1730, 1460, 1430, 1370, 1255, 1195, 1170, 1090 cm⁻¹; EIMS m/e (relative intensity) 257 (3), 241 (0.1), 225 (0.4), 201 (1), 175 (4), 145 (100), 143 (8); CIHRMS caled for C15H28O7 321.1913, found 321.1906. Anal. Calcd for C₁₅H₂₈O₇: C, 56.23; H, 8.81. Found: C, 56.21;

Anal. Calco for $C_{15}H_{28}O_7$: C, 56.25; H, 8.81. Found: C, 56.21 H, 9.06.

2,3,7,8-Tetradeoxy-2,8-dimethyl-4,6-di-O-methyl-Lglycero-L-galacto-nonaric Acid 1-(Methyl ester) 9,5-Lactone (7). Pyridinium p-toluenesulfonate (132 mg, 0.526 mmol) was added to a solution of diester-alcohol 6 (84.2 mg, 0.263 mmol) in CH₂Cl₂ (2 mL) at room temperature. After 60-70 h, the reaction mixture was washed with $H_2O(1\times)$ and brine (1×), dried (MgSO₄), filtered, and concentrated. Purification by chromatography (30% EtOAc-toluene) afforded 7 (48.8 mg, 64%) as a 4-6:1 mixture determined by ¹H NMR spectroscopy: ¹H NMR (major isomer) δ 4.02 (dd, 1 H, J = 8.1 Hz, J = 2.0 Hz, axial MeOCHCHO), 3.69 (s, 3 H, CO_2CH_3), 3.63 (ddd, 1 H, J = 12.2 Hz, J = 8.0 Hz, J =4.5 Hz, axial MeOCH), 3.46 (ddd, 1 H, J = 7.7 Hz, J = 5.2 Hz, J = 2.2 Hz, MeOCH), 3.43 (s, 3 H, OCH₃), 3.40 (s, 3 H, OCH₃), 2.65-2.70 (m, 1 H, MeO₂CCH), 2.46-2.51 (m, 1 H, axial MeCH) 2.31-2.35 (m, 1 H, equatorial CH2), 1.86-1.90 (m, 2 H, MeO_2CCHCH_2), 1.51 (q, 1 H, J = 12.0 Hz, axial CH₂), 1.30 (d, 3 H, J = 7.0 Hz, equatorial CHCH₃), 1.20 (d, 3 H, J = 7.1 Hz, MeO₂CCHCH₃); IR (thin film) 2930, 2820, 1735, 1455, 1370, 1350, 1195, 1170, 1080 cm⁻¹; EIMS m/e (relative intensity) 257 (1), 241 (0.5), 201 (1), 165 (1), 145 (100), 85 (35); CIHRMS calcd for $C_{14}H_{24}O_6$ 289.1651, found 289.1641.

Anal. Calcd for $C_{14}H_{24}O_6$: C, 58.32; H, 8.39. Found: C, 58.42; H, 8.58.

[2R - (2R*, 4S*, 5R*, 6S*, 8S*)] - 10 - (Benzoyloxy) - 5 - (Benzoyloxy) - (Benzoyloxy) - 5 - (Benzoyloxy) - (Benzoyloxy) - 5 - (Benzoyloxy) hydroxy-4,6-dimethoxy-2,8-dimethyldecanoic Acid Methyl Ester (34). The same procedure described for preparation of compound 6 was followed with diene 33 (3.0 g, 7.39 mmol) and Rh catalyst 10 (0.94 g, 1.33 mmol) in CH_2Cl_2 (125 mL). The hydrogenation reaction was run at room temperature at 1000 psi for 5 h. Purification by chromatography $(30 \rightarrow 50\% \text{ EtOAc}$ hexane) afforded 34 (2.71 g, 89%) as a clear oil: ¹H NMR (major isomer) δ 8.04 (dd, 2 H, J = 8.3 Hz, J = 1.4 Hz, o-ArH), 7.55 (tt, 1 H, J = 7.4 Hz, J = 1.3 Hz, p-ArH), 7.44 (apparent t, 2 H, J =8.0 Hz, m-ArH), 4.35-4.46 (m, 2 H, BzOCH₂), 3.66 (s, 3 H, CO_2CH_3), 3.46 (dt, 1 H, J = 7.5 Hz, J = 3.1 Hz, HOCH), 3.42 (s, 3 H, OCH₃), 3.39-3.42 (m, 1 H, syn-HOCHCHOMe), 3.32 (s, 3 H, OCH₃), 3.17 (dt, 1 H, J = 7.5 Hz, J = 3.2 Hz, anti-HOCH-CHOMe), 2.69–2.76 (m, 1 H, MeO₂CCH), 2.24 (d, 1 H, J = 7.7Hz, OH), 2.05 (ddd, 2 H, J = 14.1 Hz, J = 10.4 Hz, J = 3.2 Hz, one of MeO_2CCHCH_2), 1.90–1.97 (m, 1 H, one of $BzOCH_2CH_2$), 1.77–1.80 (m, 1 H, $BzOCH_2CH_2CH_2$), 1.51–1.68 (m, 3 H, one of MeO_2CCHCH_2 , one of $BzOCH_2CH_2CHCH_2$, and one of $BzOCH_2CH_2$), 1.48 (br ddd, 1 H, J = 14.0 Hz, J = 7.6 Hz, J =6.4 Hz, one of $BzOCH_2CH_2CHCH_2$), 1.18 (d, 3 H, J = 7.1 Hz, MeO_2CCHCH_3), 1.02 (\overline{d} , 3 \overline{H} , J = 6.6 Hz, $BzOCH_2CH_2CHCH_3$); IR (thin film) 3480, 2925, 2820, 1735, 1720, 1455, 1275, 1105, 715 cm⁻¹; EIMS m/e (relative intensity) 379 (0.1), 291 (0.3), 265 (2), 235 (3), 201 (1), 175 (6), 145 (66), 99 (100), 85 (22); CIHRMS calcd for C₂₂H₃₄O₇ 411.2382, found 411.2391

Anal. Calcd for $\rm C_{22}H_{34}O_7\!\!: C,\,64.37;\,H,\,8.35.$ Found: C, 64.46; H, 8.28.

 $[3R-[3\alpha,5\alpha,6\beta(1S^*,3S^*)]]$ -6-[5-(Benzoyloxy)-1-methoxy-3methylpentyl]tetrahydro-5-methoxy-3-methyl-2H-pyran-2one (35). p-Toluenesulfonic acid (0.22 g, 1.29 mmol) and 4-Å molecular sieves were added to a solution of ester 34 (2.65 g, 6.48 mmol) in CH_2Cl_2 (60 mL). After 1.5 h, more 4-Å molecular sieves were added. The reaction was stirred a total of 3 h at room temperature. The mixture was filtered through a Celite pad, and the filtrate was washed with saturated NaHCO₃ $(2\times)$ and brine $(2\times)$, dried (MgSO₄), filtered, and concentrated to give crude 35 (2.27 g, 93%) as a pale yellow oil. A small amount was purified by chromatography $(5 \rightarrow 10\% \text{ EtOAc-CH}_2\text{Cl}_2)$ for characterization: ¹H NMR (major isomer) δ 8.05 (dd, 2 H, J = 8.4 Hz, J = 1.4 Hz, o-ArH), 7.56 (tt, 1 H, J = 7.5 Hz, J = 1.3 Hz, p-ArH), 7.44 (apparent t, J = 7.7 Hz, m-ArH), 4.39-4.42 (m, 2 H, BzOCH₂), $4.08 \,(\text{dd}, 1 \text{ H}, J = 8.0 \text{ Hz}, J = 1.8 \text{ Hz}, \text{axial MeOCHCHO}), 3.69$ (ddd, 1 H, J = 12.5 Hz, J = 8.0 Hz, J = 4.5 Hz, axial MeOCH), 3.52 (ddd, 1 H, J = 8.0 Hz, J = 6.5 Hz, J = 1.8 Hz, MeOCH), 3.42(s, 6 H, both OCH₃), 2.46-2.54 (m, 1 H, axial MeCH), 2.33 (br ddd, 1 H, J = 12.6 Hz, J = 5.2 Hz, J = 4.6 Hz, equatorial CH₂), 1.90-1.97 (m, 1 H, one of BzOCH₂CH₂), 1.75-1.81 (m, 1 H, BzOCH₂CH₂CH), 1.59-1.74 (m, 3 H, BzOCH₂CH₂CHCH₂ and one of $BzOCH_2CH_2$), 1.52 (apparent q, 1 H, J = 12.6 Hz, axial CH_2), 1.30 (d, 3 H, J = 7.1 Hz, equatorial CHCH₃), 1.03 (d, 3 H, J =6.6 Hz, BzOCH₂CH₂CH₂CHCH₃); IR (thin film) 2920, 2810, 1730, 1715, 1590, 1445, 1370, 1310, 1265, 1170, 1105, 1020, 710 cm⁻¹; EIMS m/e (relative intensity) 291 (0.1), 235 (3), 187 (0.6), 145 (1), 112 (10), 105 (33), 99 (100); CIHRMS calcd for $C_{21}H_{30}O_6$ 379.2120, found 379.2121.

Anal. Calcd for ${\rm C_{21}H_{30}O_6:}\,$ C, 66.65; H, 7.99. Found: C, 66.79; H, 7.92.

 $[2R - [2\alpha(\gamma S^*, \epsilon S^*), 3\beta, 5\beta, 6\beta]] - 6 - Hydroxy - \epsilon, 3 - dimethoxy - \epsilon$ γ ,5-dimethyltetrahydro-2*H*-pyran-2-pentanol Benzoate and $[2R - [2\alpha(\gamma S^*, \epsilon S^*), 3\beta, 5\beta, 6\alpha]] - 6 - Hydroxy - \epsilon, 3 - dimethoxy - \gamma, 5 - \delta S^*$ dimethyltetrahydro-2H-pyran-2-pentanol Benzoate (36). The above crude lactone 35 (2.22 g) was dissolved in THF (50 mL) and cooled to -78 °C. Lithium tri-sec-butyl borohydride (1 M solution in THF, 6.5 mL, 6.5 mmol) was added dropwise. After 45 min, saturated NH₄Cl (50 mL) was added. The cold bath was removed, and after stirring for 15 min, the mixture was extracted with EtOAc $(5\times)$. The combined organic layer washed with brine $(1\times)$, dried (MgSO₄), filtered, and concentrated. Purification by chromatography ($20 \rightarrow 50\%$ EtOAc-hexane) afforded 36 (2.1 g, 87% overall, two steps) as a clear oil: ¹H NMR (major isomer, both anomers) δ 8.01-8.04 (m, 4 H), 7.53-7.57 (m, 2 H), 7.41-7.45 (m, 4 H), 5.02 (br d, 1 H, J = 2.8 Hz), 4.44-4.53 (m, 2 H), 4.29-4.37(m, 2 H), 4.13 (d, 1 H, J = 8.3 Hz), 3.64 (br d, 1 H, J = 9.0 Hz),3.54-3.59 (m, 1 H), 3.35-3.44 (m, 3 H), 3.39 (s, 6 H), 3.36 (s, 3 H), 3.35 (s, 3 H), 3.14 (dd, 1 H, J = 9.2 Hz, J = 1.8 Hz), 2.20 (td, 1 H, J = 12.7 Hz, J = 4.4 Hz), 1.97 (td, 1 H, J = 12.0 Hz, J = 4.2Hz), 1.66-1.86 (m, 7 H), 1.57-1.64 (m, 2 H), 1.41-1.59 (m, 4 H), 0.8-1.2 (m, 1 H), 1.00-1.02 (overlapping d's, 6 H), 0.92-0.95 (overlapping d's, 6 H); IR (thin film) 3430, 2930, 2820, 1715, 1600, 1455, 1315, 1275, 1105, 1030, 715 cm⁻¹; EIMS m/e (relative intensity) 380 (0.1), 348 (0.2), 322 (0.3), 265 (10), 236 (5), 189 (1), 171 (1), 157 (2), 143 (23), 113 (57), 105 (47), 99 (100), 85 (36); CIHRMS calcd for C₂₁H₃₂O₆ 381.2277, found 381.2262.

[3S-(3R*,5R*,6R*,7R*,9R*)]-9-(1,3-Dithian-2-yl)-5,7-dimethoxy-3-methyl-1,6-decanediol 1-Benzoate (37). 1.3-Propanedithiol (0.80 mL, 8.01 mmol) and BF3 Et2O (0.79 mL, 6.41 mmol) were added to a cold (-78 °C) solution of lactols 36 (2.03 g, 5.34 mmol). The resulting mixture was allowed to warm to to 0 °C during 1 h and kept at this temperature. After 3 h, more BF3.Et2O (0.130 mL, 1.1 mmol) was added. The mixture was stirred for an additional hour and then poured over ice-H₂O. The organic layer was separated, and the aqueous layer was reextracted with CH_2Cl_2 (2×). The combined organic layer was washed with brine $(1\times)$, dried (MgSO₄), filtered, and concentrated. Purification by chromatography (30% EtOAc-hexane) afforded 37 (2.15 g, 85%) as a clear oil: ¹H NMR (major isomer) δ 8.04 (apparent d, 2 H, J = 7.5 Hz, o-ArH), 7.55 (t, 1 H, J = 7.4 Hz, p-ArH), 7.33 (t, 2 H, J = 7.5 Hz, m-ArH), 4.35-4.45 (m, 2 H, BzOCH₂), 4.22(d, 1 H, J = 3.5 Hz, SCHS), 3.48-3.50 (m, 1 H, HOCH), 3.45 (s, 3 H, OCH₃), 3.40-3.45 (m, 1 H, syn-HOCHCHOMe), 3.38 (s, 3 H, OCH₃), 3.26-3.30 (m, 1 H, anti-HOCHCHOMe), 2.82-2.94 (m, 4 H, SCH₂CH₂CH₂S), 2.15–2.20 (m, 1 H, SCHCHMe), 2.07–2.12 (m, 1 H, one of SCH₂CH₂), 1.92-1.99 (m, 2 H, one of SCHCHCH₂ and one of BzOCH₂CH₂), 1.78-1.86 (m, 2 H, one of SCH₂CH₂ and BzOCH₂CH₂CH), 1.47-1.65 (m, 4 H, one of SCHCHCH₂, BzOCH₂CH₂CHCH₂, and one of BzOCH₂CH₂), 1.45 (d, 3 H, J = 6.9 Hz, SCHCHCH₃), 1.03 (d, 3 H, J = 6.6 Hz,

 $\begin{array}{l} B_2OCH_2CH_2CHCH_3); \ IR \ (thin \ film) \ 3470, \ 2920, \ 2820, \ 1710, \ 1600, \\ 1450, \ 1275, \ 1110, \ 720 \ cm^{-1}; \ EIMS \ m/e \ (relative \ intensity) \ 470 \ (1), \\ 438 \ (1), \ 420 \ (0.3), \ 363 \ (1), \ 299 \ (1), \ 261 \ (1), \ 205 \ (48), \ 173 \ (4), \ 146 \\ (100), \ 119 \ (51), \ 99 \ (50); \ CIHRMS \ calcd \ for \ C_{24}H_{38}O_5S_5 \ 471.2239, \\ found \ 471.2216. \end{array}$

Anal. Calcd for $C_{24}H_{38}O_5S_2$: C, 61.24; H, 8.14; S, 13.62. Found: C, 61.22; H, 8.20; S, 13.44.

 $[\gamma S - (\gamma R^*, \epsilon R^*, \zeta S^*, \eta R^*, \iota S^*)] - \zeta - [[(1, 1-\text{Dimethylethyl}) \text{di-}$ methylsilyl]oxy]- ϵ , η -dimethoxy- γ , ι -dimethyl-1,3-dithiane-2nonanol Benzoate (38). tert-Butyldimethylsilyl trifluoro-methanesulfonate (2.05 mL, 8.94 mmol) was added to a solution of dithiane-alcohol 37 (2.10 g, 4.47 mmol) and 2,6-lutidine (2.08 mL, 17.9 mmol) in CH_2Cl_2 (40 mL). The reaction mixture was stirred at room temperature for 1.5 h. The mixture was washed wit 1 N HCl (1×), saturated NaHCO₃ (1×), and brine (2×), dried (MgSO₄), filtered, and concentrated. Purification by chromatography yielded 38 (2.53 g, 97%) as a clear oil: ¹H NMR (major isomer) δ 8.04 (dd, 2 H, J = 8.3 Hz, J = 1.3 Hz, o-ArH), 7.56 (br tt, 1 H, J = 7.4 Hz, J = 1.3 Hz, p-ArH), 7.44 (apparent t, 2 H, J = 8.0 Hz, m-ArH), 4.35-4.45 (m, 2 H, BzOCH₂), 4.18 (d, 1 H, J = 3.4 Hz, SCHS), 3.90 (dd, 1 H, J = 6.2 Hz, J = 1.4 Hz, TBSOCH), 3.44 (s, 3 H, OCH₃), 3.33 (s, 3 H, OCH₃), 3.28 (br d, 1 H, J = 10.2 Hz, anti-TBSOCHCHOMe), 3.17 (ddd, 1 H, J = 9.3 Hz, J = 6.1 Hz, J = 2.7 Hz, syn-TBSOCHCHOMe), 2.81-2.95 (m, 4 H, SCH₂CHCH₂S), 2.11-2.18 (m, 1 H, SCHCHMe), 2.00-2.11 (m, 2 H, one of SCH₂CH₂ and one of BzOCH₂CH₂), 1.88-1.95 (m, 1 H, BzOCH₂CH₂CH), 1.79–1.88 (m, 1 H, one of SCH₂CH₂), 1.75 (ddd, 1 H, J = 15.1 Hz, J = 8.8 Hz, J = 2.2 Hz, one of SCHCHCH₂), 1.46-1.59 (m, 3 H, one of SCHCHCH₂, one of BzOCH₂CH₂CHCH₂, and one of BzOCH₂CH₂), 1.40 (ddd, 1 H, J = 14.3 Hz, J = 9.7 Hz, J = 4.7 Hz, one of BzOCH₂CH₂CHCH₂), 1.12 (d, 3 H, J = 7.0 Hz, SCHCHCH₃), 1.04 (d, 3 H, J = 6.7 Hz, BzOCH₂CH₂CHCH₃), 0.91 (s, 9 H, SiC(CH₃)₃), 0.093 (s, 3 H, SiCH₃), 0.088 (s, 3 H, SiCH₃); IR (thin film) 2940, 2930, 2890, 2850, 1720, 1605, 1465, 1455, 1380, 1280, 1110, 960, 840, 780, 720 cm⁻¹ EIMS m/e (relative intensity) 527 (23), 495 (1), 421 (2), 389 (1), 349 (2), 261 (5), 205 (100), 146 (23), 99 (66); CIHRMS calcd for C₃₀H₅₂O₅SiS₂ 585.3104, found 585.3108.

Anal. Calcd for $C_{30}H_{52}O_5SiS_2$: C, 61.60; H, 8.96; S, 10.96. Found: C, 61.85; H, 9.10; S, 11.17.

 $[\gamma S - (\gamma R^*, \epsilon R^*, \zeta S^*, \eta R^*, \iota S^*)] - \zeta - [[(1, 1-Dimethylethyl)di$ $methylsilyl] oxy] {\scriptstyle -\epsilon,\eta-dimethoxy-\gamma,\iota-dimethyl-1,3-dithiane-2-dimethyl-1,3-dithiane-2-dimethyl-1,3-dithiane-2-dimethylsilyl]} oxy] {\scriptstyle -\epsilon,\eta-dimethoxy-\gamma,\iota-dimethyl-1,3-dithiane-2-dimethyl-1,3-dithiane-2-dimethylsilyl]} oxy] {\scriptstyle -\epsilon,\eta-dimethoxy-\gamma,\iota-dimethyl-1,3-dithiane-2-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimet$ nonanol (39). Anhydrous K₂CO₃ (1.76 g, 12.8 mmol) was added to a solution of benzoate 38 (1.49 g, 2.55 mmol) in MeOH (25 mL), and the resulting mixture was stirred at room temperature for 4 h. The reaction mixxture was filtered through a Celite pad, and the filtrate was acidified to pH 1-2 with 1 N HCl. After concentrating the filtrate, CH₂Cl₂ and brine were added to the residue. The aqueous layer was separated and reextracted with CH_2Cl_2 (2×). The combined organic layer was washed with brine $(1\times)$, dried (MgSO₄), filtered, and concentrated. Purification by chromatography afforded pure 39 (932 mg, 76%) as a clear oil. It is at this stage that the minor isomers from the high-pressure hydrogenation reaction can be separated: $[\alpha]^{25}_{D} = -33.9^{\circ}$ (c = 1.36, CHCl₃); ¹H NMR δ 4.19 (d, 1 H, J = 3.4 Hz, SCHS), 3.89 (dd, 1 H, J = 6.2 Hz, J = 1.5 Hz, TBSOCH), 3.65–3.70 (m, 1 H, one of HOCH₂), 3.72-3.77 (m, 1 H, one of HOCH₂), 3.44 (s, 3 H, OCH_3), 3.33 (s, 3 H, OCH_3), 3.27 (br td, 1 H, J = 10.0 Hz, J =1.9 Hz, anti-TBSOCHCHOMe), 3.16 (ddd, 1 H, J = 9.3 Hz, J = 6.2 Hz, J = 2.9 Hz, syn-TBSOCHCHOMe), 2.83–2.97 (m, 4 H, $SCH_2CH_2CH_2S$), 2.08-2.17 (m, 2 H, one of SCH_2CH_2 and SCHCHMe), 1.78-1.88 (m, 2 H, one of SCH₂CH₂ and $HOCH_2CH_2CHMe$), 1.71–1.76 (m, 2 H, one of $SCHCHCH_2$ and one of HOCH₂CH₂), 1.59 (br s, 1 H, OH), 1.50-1.56 (m, 2 H, one of SCHCHCH2 and one of HOCH2CH2CHCH2), 1.34-1.42 (m, 2 H, one of HOCH₂CH₂CHCH₂ and one of HOCH₂CH₂), 1.12 (d, 3 H, J = 7.0 Hz, SCHCHCH₃), 0.98 (d, 3 H, J = 6.7 Hz, HOCH₂CH_iCHCH₃), 0.91 (s, 9 H, SiC(CH₃)₃), 0.092 (s, 3 H, SiCH₃), 0.087 (s, 3 H, SiCH₃); IR (thin film) 3420, 2940, 2920, 2880, 1455, 1375, 1245, 1085, 830, 775 cm⁻¹; EIMS m/e (relative intensity) 423 (18), 391 (12), 359 (2), 317 (1), 285 (5), 261 (10), 205 (100), 173 (7), 146 (23), 99 (70); CIHRMS calcd for C₂₃H₄₈O₄ SiS₂ 481.2842, found 481.2855.

Anal. Calcd for $C_{23}H_{48}O_4SiS_2$: C, 57.45; H, 10.06; S, 13.34. Found: C, 57.65; H, 10.32; S, 13.10.

[1R-[1R*(1S*,3R*),2S*,4R*]]-(1,1-Dimethylethyl)[[1-[3-(1,3-dithian-2-yl)-1-methoxybutyl]-2-methoxy-4-methyl-6-iodohexylloxyldimethylsilane (40). The same procedure described for the preparation of 16 was followed with alcohol 39 (932 mg, 1.94 mmol), triphenylphosphine (815 mg, 3.11 mmol), I₂ (764 mg, 3.01 mmol), and pyridine (0.50 mL, 6.21 mmol) in benzene (30 mL). Purification by chromatography (hexane \rightarrow 20% EtOAc-hexane) gave 40 (1.03 g, 89.5%) as a clear oil: $[\alpha]^{25}$ = -33.9° (c = 1.69, CHCl₃); ¹H NMR δ 4.19 (d, 1 H, J = 3.4 Hz, SCHS), 3.90 (br d, 1 H, J = 6.0 Hz, TBSOCH), 3.46 (s, 3 H, OCH₃), 3.34 (s, 3 H, OCH₃), 3.30-3.34 (m, 1 H, one of ICH₂), 3.27 (br d, 1 H, J = 10.4 Hz, anti-TBSOCHCHOMe), 3.19 (q, 1 H, J = 8.0Hz, one of ICH₂), 3.11 (ddd, 1 H, J = 9.2 Hz, J = 6.2 Hz, J = 2.7Hz, syn-TBSOCHCHOMe), 2.84-2.97 (m, 4 H, SCH₂CH₂CH₂S), 2.09-2.17 (m, 2 H, one of SCH₂CH₂ and SCHCHMe), 2.01-2.08 (m, 1 H, one of ICH_2CH_2), 1.78–1.89 (m, 2 H, one of SCH_2CH_2 and ICH₂CH₂CHMe), 1.72 (ddd, 1 H, J = 15.0 Hz, J = 8.7 Hz, J = 2.0 Hz, one of SCHCHCH₂), 1.58-1.65 (m, 1 H, one of ICH₂CH₂), 1.50-1.56 (m, 2 H, one of SCHCHCH₂ and one of $ICH_2CH_2CHCH_2$), 1.34 (ddd, J = 14.3 Hz, J = 9.6 Hz, J = 4.8Hz, one of $ICH_2CH_2CHCH_2$), 1.13 (d, 3 H, J = 7.0 Hz, SCHCHCH₃), 0.95 (d, 3 H, J = 6.7 Hz, ICH₂CH₂CHCH₃), 0.92 (s, 9 H, SiC(CH₃)₃), 0.097 (s, 3 H, SiCH₃), 0.094 (s, 3 H, SiCH₃); IR (thin film) 2940, 2920, 2880, 1460, 1380, 1250, 1090, 840, 780 cm^{-1} ; EIMS m/e (relative intensity) 533 (61), 501 (3), 427 (4), 385 (5), 349 (2), 261 (5), 241 (30), 205 (100), 159 (17), 146 (22), 119 (26), 99 (21); CIHRMS calcd for C₂₃H₄₇IO₃SiS₂ 591.1860, found 591.1868.

Anal. Calcd for $C_{23}H_{47}IO_3SiS_2$: C, 46.76; H, 8.02. Found: C, 47.10; H, 8.10.

[1R-[1R*(1S*,3R*),2S*,4R*]]-(1,1-Dimethylethyl)[[1-[3-(1,3-dithian-2-yl)-1-methoxybutyl]-2-methoxy-4-methyl-6-(phenylsulfonyl)hexyl]oxy]dimethylsilane (41). Benzenesulfinic acid, sodium salt (357 mg, 2.18 mmol) was added to a solution of iodide 40 (988 mg, 1.67 mmol) in DMF (16 mL) at room temperature. After stirring for 20 h, the reaction mixture was diluted with H_2O (100 mL) and extracted with EtOAc (4×). The combined organic layer was washed with brine $(1\times)$, dried (Mg-SO₄), filtered, and concentrated. Purification by chromatography $(20 \rightarrow 40\% \text{ EtOAc-hexane})$ yielded recovered 40 (29 mg, 3%) and 41 (821 mg, 81%). 41: $[\alpha]_{D}^{25} = -33.2^{\circ}$ (c = 1.94, CHCl₃); ¹H NMR δ 7.92 (apparent d, 2 H, J = 7.3 Hz, o-ArH), 7.65 (br t, 1 H, J = 7.4 Hz, p-ArH), 7.57 (t, 2 H, J = 7.4 Hz, m-ArH), 4.16 (d, 1 H, J = 3.4 Hz, SCHS), 3.86 (br d, 1 H, J = 5.9 Hz, TBSOCH), 3.31 (s, 6 H, both OCH_3), 3.24 (br d, 1 H, J = 10.2 Hz, anti-TBSO-CHCHOMe), 3.08-3.18 (m, 2 H, PHSO₂CH₂), 3.03 (ddd, 1 H, J = 9.4 Hz, J = 6.0 Hz, J = 2.6 Hz, syn-TBSOCHCHOMe), 2.79-2.95 (m, 4 H, SCH₂CH₂CH₂S), 2.07-2.16 (m, 2 H, one of SCH_2CH_2 and $SCHCHCH_3$), 1.80–1.89 (m, 2 H, one of SCH_2CH_2 and one of $PhSO_2CH_2CH_2$), 1.72–1.80 (m, 1 H, $PhSO_2CH_2CH_2CH_2CH_Me$), 1.65 (br ddd, 1 H, J = 15.1 Hz, J = 8.8Hz, J = 2.2 Hz, one of SCHCHCH₂), 1.43–1.55 (m, 3 H, one of SCHCHCH₂, one of PhSO₂CH₂CH₂CHCHCH₂, and one of PhSO₂CH₂CH₂CH₂), 1.33 (ddd, 1 H, J = 14.6 Hz, J = 9.9 Hz, J = 4.9Hz, one of $PhSO_2CH_2CH_2CHCH_2$), 1.11 (d, 3 H, J = 7.0 Hz, $SCHCHCH_3$, 0.91 (d, 3 H, J = 6.8 Hz, $PhSO_2CH_2CH_2CHCH_3$), 0.89 (s, 9 H, SiC(CH₃)₃), 0.07 (s, 3 H, SiCH₃), 0.05 (s, 3 H, SiCH₃); IR (thin film) 2940, 2890, 2820, 1465, 1450, 1310, 1255, 1150, 1095, 840, 780, 700 cm⁻¹; EIMS m/e (relative intensity) 547 (10), 441 (1), 409 (1), 349 (2), 255 (10), 205 (100), 146 (26), 119 (16); CIHRMS calcd for $C_{29}H_{52}O_5SiS_3$ 605.2825, found 605.2811.

Anal. Calcd for $C_{29}H_{52}O_5SiS_3$: C, 57.57; H, 8.66; S, 15.90. Found: C, 57.49; H, 8.89; S, 15.89.

Formation of Sulfone Epimers (2a). *n*-BuLi (1.39 M solution in hexanes, 0.68 mL, 0.95 mmol) was added dropwise to a solution of primary sulfone 41 (520 mg, 0.86 mmol) in THF (8.5 mL) kept at -78 °C. After 10-15 min, to the yellow solution was added MeI (0.11 mL, 1.72 mmol) all at once. The resulting mixture was attired at -78 °C for 45 min. Saturated NaHCO₃ was added, and the mixture allowed to attain room temperature and extracted with EtOAc (3×). The combined organic layer was washed with saturated Na₂S₂O₃ (1×) and brine (1×), dried (MgSO₄), filtered, and concentrated. Purification by chromatography (20 \rightarrow 30% EtOAc-hexane) gave 2a (495 mg, 93%) containing ca. 10-15% of gem-dimethylated sulfone as determined by ¹H NMR (on smaller scales, formation of dimethylated sulfone is not observed). Diastereomeric 2a was separated by preparative thick-layer chromatography (20% EtOAc-hexane, developed 2-3 times) for characterization purposes.

Higher R_f diastereomer (R_f 0.29, 20% EtOAc-hexane): $[\alpha]^{25}$ = -20.5° (c = 1.07, CHCl₃); ¹H NMR δ 7.89 (apparent dd, 2 H, J = 8.5 Hz, J = 1.4 Hz, o-ArH), 7.64 (tt, 1 H, J = 7.4 Hz, J =1.3 Hz, p-ArH), 7.56 (apparent t, 2 H, J = 7.6 Hz, m-ArH), 4.18 (d, 1 H, J = 3.4 Hz, SCHS), 3.92 (dd, 1 H, J = 5.7 Hz, J = 1.3Hz, TBSOCH), 3.33 (s, 3 H, OCH₃), 3.32 (s, 3 H, OCH₃), 3.27-3.31 (overlapping apparent d, 1 H, J = 10.1 Hz, anti-TBSOCHCHOMe, and m, 1 H, $PhSO_2CHMe$), 3.08 (ddd, 1 H, J = 9.3 Hz, J = 5.7Hz, J = 2.4 Hz, syn-TBSOCHCHOMe), 2.76-2.96 (m, 4 H, $SCH_2CH_2CH_2S$), 2.06-2.17 (m, 2 H, one of SCH_2CH_2 and SCHCHMe), 2.02 (ddd, 1 H, J = 13.1 Hz, J = 8.4 Hz, J = 4.3 Hz, one of PhSO₂CHCH₂), 1.78–1.86 (m, 2 H, one of SCH₂CH₂ and PhSO₂CHCH₂CHMe), 1.68 (ddd, 1 H, J = 15.1 Hz, J = 8.8 Hz, J = 2.2 Hz, one of SCHCHCH2), 1.46-1.55 (m, 2 H, one of SCHCHCH₂ and one of PhSO₂CHCH₂CHCH₂), 1.22-1.30 (m, 2 H, one of PhSO₂CHCH₂CHCH₂ and one of PhSO₂CHCH₂), 1.24 $(d, 3 H, J = 6.9 Hz, PhSO_2CHCH_3), 1.11 (d, 3 H, J = 7.0 Hz,$ SCHCHCH₃), 0.98 (d, 3 H, J = 6.7 Hz, PhSO₂CHCH₂CHCH₃), 0.89 (s, 9 H, SiC(CH₃)₃), 0.08 (s, 3 H, SiCH₃), 0.07 (s, 3 H, SiCH₃); IR (thin film) 2950, 2930, 2890, 1460, 1445, 1305, 1150, 1090, 840, 735 cm⁻¹.

Lower R_f diastereomer (R_f 0.23, 20% EtOAc-hexane): $[\alpha]^{25}$ _D = -39.0° (c = 1.27, CHCl₃); ¹H NMR δ 7.89 (apparent dd, 2 H, J = 8.2 Hz, J = 1.3 Hz, o-ArH), 7.66 (tt, 1 H, J = 7.5 Hz, J =1.3 Hz, p-ArH), 7.57 (apparent t, 2 H, J = 7.6 Hz, m-ArH), 4.17 (d, 1 H, J = 3.5 Hz, SCHS), 3.86 (dd, 1 H, J = 6.1 Hz, J = 1.3Hz, TBSOCH), 3.37 (s, 3 H, OCH₃), 3.32 (s, 3 H, OCH₃), 3.25 (br d, 1 H, J = 10.3 Hz, anti-TBSOCHCHOMe), 3.07-3.15 (over-

lapping ddd, 1 H, J = 9.4 Hz, J = 6.3 Hz, J = 3.3 Hz, syn-TBSOCHCHOMe, and m, 1 H, PhSO₂CHMe), 2.78-2.96 (m, 4 H, $SCH_2CH_2CH_2S$), 2.08–2.16 (m, 2 H, one of SCH_2CH_2 and SCHCHMe), 1.80–1.89 (m, 1 H, one of SCH_2CH_2), 1.72–1.79 (m, 1 H, PhSO₂CHCH₂CHMe), 1.69 (ddd, 1 H, J = 15.1 Hz, J = 8.8Hz, $J = \tilde{2}.2$ Hz, one of SCHCHCH₂), 1.59-1.62 (m, 2 H, PhSO₂CHCH₂), 1.51 (ddd, 1 H, J = 15.1 Hz, J = 10.5 Hz, J = 4.6 Hz, one of SCHCHCH₂), 1.38-1.48 (m, 2 H, $PhSO_2CHCH_2CHCH_2$), 1.28 (d, 3 H, J = 6.8 Hz, $PhSO_2CHCH_3$), 1.13 (d, 3 H, J = 7.0 Hz, SCHCHCH₃), 0.91 (s, 9 H, SiC(CH₃)₃), 0.86 (d, 3 H, J = 6.6 Hz, PhSO₂CHCH₂CHCH₃), 0.08 (s, 3 H, SiCH₃), 0.07 (s, 3 H, SiCH₃); IR (thin film) 2940, 2920, 2880, 1455, 1440, 1300, 1245, 1140, 1085, 835, 755 cm⁻¹.

Diastereomeric mixture: EIMS m/e (relative intensity) 618 (1), 561 (50), 529 (3), 455 (4), 423 (2), 381 (2), 349 (7), 269 (33), 205 (100); CIHRMS calcd for C₃₀H₅₄O₅SiS₃ 619.2982, found 619.2970.

Acknowledgment. This research was supported by PHS Grant AI 16943. A PHS Fellowship (Grant GM 11747) to A.V. is gratefully acknowledged. NMR spectra were obtained through the auspices of the Northeast Regional NSF/NMR Facility at Yale University, which was supported by NSF Chemistry Division Grant CHE 7916210. We thank Margaret Y. Chu-Moyer for assistance in this project.

Supplementary Material Available: Characterizations of intermediates in the sequences going from $25 \rightarrow 20$ and from 29 \rightarrow 32 (3 pages). Ordering information is given on any current masthead page.

A Formal Synthesis of FK-506. Exploration of Some Alternatives to **Macrolactamization**

A. Brian Jones, Annabella Villalobos, Robert G. Linde II, and Samuel J. Danishefsky*

Department of Chemistry, Yale University, New Haven, Connecticut 06511

Received November 27, 1989

The coupling of the previously described subunits 2, 3, and 4 is described. The C_{28} - C_{27} *E*-double bond is fashioned from a sulfurane induced dehydration of alcohol 11. The C_{19} - C_{20} *E*-double bond was constructed via a modified Julia process culminating in a reductive elimination of a vicinal trifluoracetoxy sulfone (see $22 \rightarrow 23 \rightarrow 24$ and 25). The synthesis of intermediates anticipating potential macrolactonization are also described.

Introduction

The extraordinary immunosuppressive properties of FK-506 (1), as well as its novel structure, have engendered a great deal of interest in its clinical potential, mechanism of action, and chemistry.¹⁻³ Not surprisingly, considerable attention has also been directed to its synthesis. Though

many approaches to the total synthesis problem have been recorded,⁴ only one comprehensive solution has been achieved. Earlier this year a group of scientists at the Merck, Sharpe and Dohme Research Laboratories reported the total synthesis of FK-506.5 In the terminal stage of this landmark effort, systems of the type 7 (including the specific compound 7c) were converted to FK-506 by insertion of a two carbon (glycolate) fragment, followed by macrolactamization. Such compounds were also identified as strategic goals in our synthetic effort.

In earlier papers in this issue,⁶ we described straightfoward routes to properly matched, enantiomerically pure, subunits 2, 3, and 4. Herein we describe in detail the

^{(1) (}a) Tanaka, H.; Kuroda, A.; Marusawa, H.; Hatanaka, H.; Kino, T.; Goto, T.; Hashimoto, M. J. Am. Chem. Soc. 1987, 109, 5031. (b) Kino, T.; Hatanaka, H.; Hashimoto, M.; Nishiyama, M.; Goto, T.; Okuhara, M.; 1.; Hatanaka, H.; Hashimoto, M.; Nishiyama, M.; Goto, T.; Okuhara, M.; Kohsaka, M.; Aoki, H.; Imanaka, H. J. Antibiot. 1987, 40, 1249. (c) Kino, T.; Hatanaka, H.; Miyata, S.; Inamura, N.; Nishiyama, M.; Yajima, T.; Goto, T., Okuhara, M.; Kohsaka, M.; Aoki, H.; Ochiai, T. J. Antibiot. 1987, 40, 1256. (d) Hatanaka, H.; Iwami, M.; Kino, T.; Goto, T.; Okuhara, M. J. Antibiot. 1988, 41, 1586. (e) Coleman, R. S.; Danishefsky, S. J. Heterocycles 1989, 28, 157. (f) Askin, D.; Reamer, R. A.; Jones, T. K.; Volante, R. P.; Shinkai, I. Tetrahedron Lett. 1989, 30, 671. (g) Askin, D.; Parma P.A.; Lon D.; Valenze, B. P.; Shinkai, T. Gutor, T. (g) Askin, D.; Reamer, R. A.; Joe, D.; Volante, R. P.; Shinkai, I. Tetrahedron Lett. 1989, 30, 6121

⁽²⁾ Starzl, T. E.; Todo, S.; Fung, J.; Demetris, A. J.; Venkataramman,

⁽a) Siekierka, J. J.; 1000; 5.; 7 Ung, S.; Deneuris, A. S.; Venkadarahinan, R.; Jain, A. Lancet 1989, 1000.
(a) Siekierka, J. J.; Hung, S. H. Y.; Poe, M.; Lin, C. S.; Sigal, N. H. Nature 1989, 341, 755.
(b) Harding, M. W.; Galat, A.; Uehling, D. E.; Schreiber, S. L. Nature 1989, 341, 758.

⁽⁴⁾ For a comprehensive listing of synthetic efforts as of this writing refer to footnote 3 within ref 6b.

⁽⁵⁾ For the total synthesis of FK-506, see: Jones, T. K.; Mills, S. G.; Reamer, R. A.; Askin, D.; Desmond, R.; Volante, R. D.; Shinkai, I. J. Am. Chem. Soc. 1989, 111, 1157

^{(6) (}a) Linde, R. G. II; Egbertson, M.; Coleman, R. S.; Jones, A. B.; Danishefsky, S. J. J. Org. Chem., preceding. (b) Villalobos, A.; Danishefsky, S. J. J. Org. Chem., preceding.